Magnetic Phase Diagram of the Ferromagnetic Shape Memory Alloys Ni2MnGa1-xCux

Abstract:

Article Preview

X-ray powder diffraction, permeability, magnetization and differential scanning calorimetry measurements were carried out on the magnetic shape memory alloys Ni2MnGa1−xCux (0 ≤ x ≤ 0.25). On the basis of the experimental results, the phase diagram in the temperature– concentration plane was determined for this alloy system. The determined phase diagram is spanned by the paramagnetic austenite phase (Para-A), paramagnetic martensite phase (Para-M), ferromagnetic austenite phase (Ferro-A), ferromagnetic martensite phase (Ferro-M) and the premartensite phase. It was found that the magnetostructural transition between the phases Para-A and Ferro-M can occur in the concentration region 0.12 < x ≤ 0.14 and that Ni2MnGa1−xCux has the characteristics of the phase diagram similar to those of the phase diagrams of Ni2+xMn1−xGa and Ni2Mn1−xCuxGa. In order to understand the phase diagram, the phenomenological free energy as a function of the martensitic distortion and magnetization was constructed and analyzed.

Info:

Periodical:

Edited by:

V.A. Chernenko

Pages:

165-176

DOI:

10.4028/www.scientific.net/MSF.684.165

Citation:

K. Endo et al., "Magnetic Phase Diagram of the Ferromagnetic Shape Memory Alloys Ni2MnGa1-xCux", Materials Science Forum, Vol. 684, pp. 165-176, 2011

Online since:

May 2011

Export:

Price:

$35.00

[1] P. J. Brown, T. Kanomata, M. Matsumoto, K. -U. Neumann and K. R. A. Ziebeck, in: Magnetism and Structure in Functional Materials, edited by A. Planes, L. Mańosa and A. Saxena (Springer-Verlag Berlin Heidelberg 2005).

[2] K. Ullakko, J. K. Huang, C. Kantner, R.C. O'Handley and V.V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

[3] P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. -U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck: J. Phys.: Condens. Matter Vol. 14 (2002), p.10159.

DOI: 10.1088/0953-8984/14/43/313

[4] F. X. Hu, B. G. Shen and J. R. Sun: Appl. Phys. Lett. Vol. 76 (2000), p.3460.

[5] F. X. Hu, B. G. Shen, J. R. Sun and G. H. Wu: Phys. Rev. B Vol. 64 (2001), p.132412.

[6] F. X. Hu, J. R. Sun, G. H. Wu and B. G. Shen: J. Appl. Phys. Vol. 90 (2001), p.5216.

[7] J. Marcos, L. Manõsa, A. Planes, F. Casanova, X. Batlle, A. Labarta and B. Matínez: J. Phys. IV Vol. 115 (2004), p.105.

[8] L. Pareti, M. Solzi, F. Albertini and A. Paoluzi: Eur. Phys. J. B Vol. 32 (2003), p.303.

[9] V. V. Khovailo, K. Oikawa, T. Abe and T. Takagi: J. Appl. Phys. Vol. 93 (2003), p.8483.

[10] A. A. Cherechukin, T. Takagi, M. Matsumoto and V. D. Buchel'nikov: Phys. Lett. A Vol. 326 (2004), p.146.

[11] F. Albertini, F. Canepa, S. Cirafici, E. A. Franceschi, M. Napoletano, A. Paoluzi, L. Pareti and M. Solzi: J. Magn. Magn. Mater. Vol. 272-276 (2004), p.2111.

DOI: 10.1016/j.jmmm.2003.12.883

[12] A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. Shavrov and T. Takagi: J. Magn. Magn. Mater. Vol. 272-276 (2004), p. (2040).

DOI: 10.1016/j.jmmm.2003.12.1363

[13] M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso and D. Schlagel: Phys. Rev. B Vol. 72 (2005), p.094435.

[14] F. Albertini, M. Solzi, A. Paoluzi and L. Righi: Mater. Sci. Forum Vol. 583 (2008), p.169.

[15] A. N. Vasil'ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani: Phys. Rev. B Vol. 59 (1999), p.1113.

DOI: 10.1103/physrevb.59.1113

[16] V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev and A. N. Vasiliev: Phys. Rev. B Vol. 72 (2005), p.224408.

DOI: 10.1103/physrevb.73.149901

[17] S. Fujieda, A. Fujita and K. Fukamichi: Appl. Phys. Lett. Vol. 81 (2002), p.1276.

[18] X. B. Liu and Z. Altounian: J. Magn. Magn. Mater. Vol. 264 (2003), p.209.

[19] M. Kataoka, K. Endo, N. Kudo, T. Kanomata, H. Nishihara, T. Shishido, M. Nagasako, R. Y. Umetsu and R. Kainuma: Phys. Rev. B Vol. 82 (2010), p.214423.

[20] S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I. Dubenko, A. Y. Takeuchi and A. P. Guimarães: Appl. Phys. Lett. Vol. 88 (2006), p.192511.

[21] A. M. Gomes, M. Khan, S. Stadler, N. Ali, I. Dubenko, A. Y. Takeuchi and A. P. Guimarães: J. Appl. Phys. Vol. 99 (2006), p. 08Q106.

[22] M. Khan, I. Dubenko, S. Stadler and N. Ali: J. Appl. Phys. Vol. 102 (2007), p.023901.

[23] M. Khan, S. Stadler and N. Ali: J. Appl. Phys. Vol. 101 (2007), p. 09C515.

[24] J. F. Duan, Y. Long, B. Bao, H. Zhang, R. C. Ye, Y. Q. Chang, F. R. Wan and G. H. Wu: J. Appl. Phys. Vol. 103 (2008), p.063911.

[25] B. R. Gautam, I. Dubenko, J. C. Mabon, S. Stadler and N. Ali: J. Alloys Compd. Vol. 472 (2009), p.35.

[26] C. Jiang, J. Wang, P. Li, A. Jia and H. Xu: Appl. Phys. Lett. Vol. 95 (2009), p.012501.

In order to see related information, you need to Login.