Influence of CuO Additive on Physical Properties of BaTiO3 Ceramics


Article Preview

Various ceramics were prepared by the conventional solid-state reaction technique according to the compositional formula of (1-x) BaTiO3 + x CuO with x = 0.00 ~ 0.05. The influence of CuO additive on microstructure, crystalline structure and dielectric and piezoelectric properties were investigated. It has been found that CuO acts like a sintering aid in the CuO-modified BaTiO3 ceramics to promote the ceramic densification and suppress the abnormal grain growth during sintering process, and decreases the orthorhombic-tetragonal phase transition temperature. The CuO-modified BaTiO3 ceramics show desirable microstructures with high density, small average grain size and uniform grain size distribution. For the one with x = 0.01, it has the good piezoelectric properties of d33 = 300 pC/N, kp = 0.49, k33 = 0.62 and Qm = 425 at room temperature, and exhibits a ε' peak at -5°C and a d33 maximum of 353 pC/N at 0°C, respectively.



Edited by:

Chengming Li, Chengbao Jiang, Zhiyong Zhong and Yichun Zhou




Z. Zhang et al., "Influence of CuO Additive on Physical Properties of BaTiO3 Ceramics", Materials Science Forum, Vol. 687, pp. 287-291, 2011

Online since:

June 2011




[1] B. Jaffe, W. R. Cook and H. Jaffe: Piezoelectric Ceramics (Academic Press, London 1971).

[2] H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu and S. Tsurekawa: Jpn. J. Appl. Phys Vol. 45 (2006), p. L30.

[3] T. Karaki, K. Yan, T. Miyamoto and M. Adachi: Jpn. J. Appl. Phys Vol. 46 (2007), p. L97.

[4] S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi and T. Kimura: Jpn. J. Appl. Phys Vol. 46 (2007), p.7039.

[5] S. F. Shao, J. L. Zhang, Z. Zhang, P. Zheng, M. L. Zhao, J. C. Li and C. L. Wang: J. Phys. D: Appl. Phys Vol. 41 (2008), p.125408.

[6] C. F. Yang, L. Wu and T. S. Wu: J. Mater. Sci Vol. 27 (1992), p.6573.

[7] D. Lin, K. W. Kwok and H. L. W. Chan: Appl. Phys. Lett Vol. 90 (2007), p.232903.

[8] H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, H. G. Lee and H. W. Kang: J. Am. Ceram. Soc Vol. 91 (2008), p.2374.

[9] E. M. Alkoy and M. Papila: Ceram. Int Vol. 36 (2010), p. (1921).

[10] E. Li, H. Kakemoto, S. Wada and T. Tsurumi: J. Am. Ceram. Soc Vol. 90 (2007), p.1787.

[11] G. Arlt and N. A. Pertsev: J. Appl. Phys Vol. 70 (1991), p.2283.

[12] Q. M. Zhang, H. Wang, N. Kim and L. E. Cross: J. Appl. Phys Vol. 75 (1994), p.454.

[13] M. Demartin and D. Damjanovic: Appl. Phys. Lett Vol. 68 (1996), p.3046.