The Nd-Doping Effect on Dielectric Abnormity of BiFeO3 Ceramics below the Néel Temperature


Article Preview

Bismuth neodymium ferrite (Bi1-xNdxFeO3: BNFO; x=0, 0.025, 0.075, 0.125, 0.175) ceramics were prepared by a co-precipitation method and sintered at 800 °C, using nitrates as precursors. The crystal structure and dielectric properties of the samples were characterized by X-ray diffraction (XRD)and dielectric permittivity measurement at different temperatures and frequencies. XRD suggests that the impurity phases are weakened by suitably doping x=0.075. Dielectric spectra indicate that relaxation peaks below the Néel temperature which may be produced by the effect of grain boundaries and dipoles with heating vanish after doping Nd at the same content. Complex impedance spectra manifest that the doped samples are closer to Debye-type, and the impedance rises which will lead to low leakage current.



Edited by:

Chengming Li, Chengbao Jiang, Zhiyong Zhong and Yichun Zhou




D. G. Chen et al., "The Nd-Doping Effect on Dielectric Abnormity of BiFeO3 Ceramics below the Néel Temperature", Materials Science Forum, Vol. 687, pp. 439-446, 2011

Online since:

June 2011




[1] N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha and S.W. Cheong: Nature Vol. 429 (2004), p.392.

[2] N.A. Hill: J. Phys. Chem. B Vol. 104 (2000), p.6694.

[3] W. Eerenstein, N.D. Mathur and J.F. Scott: Nature Vol. 442 (2006), p.759.

[4] P. Fischer, M. Polomska, I. Sosnowska and M. Szymanski: J. Phys. C: Solid State Phys. Vol. 13 (1980), p. (1931).

[5] R. Haumont, I.A. Kornev, S. Lisenkov L. Bellaiche, J. Kreisel and B. Dkhil: Phys. Rev. B Vol. 78 (2008), p.134108.


[6] I.A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil and L. Bellaiche: Phys. Rev. Lett. Vol. 99 (2007), p.227602.

[7] J.C. Chen, J.M. Wu: Appl. Phys. Lett. Vol. 91 (2007), p.182903.

[8] S.V. Kizelev, R.P. Ozerov and G.S. Zhdanov, Sov. Phys. Dokl. Vol. 145(1962), p.1255.

[9] S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming and X.Q. Pan: Appl. Phys. Lett. Vol. 88 (2006), p.162901.

[10] F. Gao, C. Cai, Y. Wang, S. Dong, X.Y. Qiu, G.L. Yuan, Z.G. Liu and J.M. Liu: J. Appl. Phys. Vol. 99 (2006), 094105.

[11] A.Z. Simões, F.G. Garcia, C.D. S Riccardi: Mater. Chem. Phys. Vol. 116 (2009), p.305.

[12] Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Z. T Song, and S.L. Feng: Appl. Phys. Lett. Vol. 91 (2007), p.082906.

[13] F.Z. Huang, X.M. Lu, W.W. Lin, X.M. Wu, Y. Kan and J.S. Zhu: Appl. Phys. Lett. Vol. 89 (2006), p.242914.

[14] G.L. Yuan, S.W. Or: Appl. Phys. Lett. Vol. 88 (2006), p.062905.

[15] K.S. Nalwa and A. Garg: J. Appl. Phys. Vol. 103 (2008), p.044101.

[16] R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary and A. Banerjee: J. Magn. Magn. Mater. Vol. 320 (2008), p.2602.

[17] D.H. Wang, W.C. Goh, M. Ning and C. K. Ong: Appl. Phys. Lett. Vol. 88 (2006), p.212907.

[18] V.R. Palkar: Appl. Phys. Lett. Vol. 80 (2002), p.1628.

[19] L.L. Hench and J.K. West: Principles of Electronic Ceramics (John Wiley and Sons, New York 1990).

[20] A. Verma, O.P. Thakur, C. Prakash, T.C. Goel and R.G. Mendiratta, Mater. Sci. Eng. B Vol. 116 (2005), p.1.

[21] W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott and N.D. Mathur: Science Vol. 307 (2005), p. 1203a.

[22] N. Ponpandian, P. Balaya, A. Narayanasamy: J. Phys.: Condens. Matter Vol. 14 (2002), p.3221.

[23] N. Sivakumar, A. Narayanasamy, N. Ponpandian and G. Govindaraj, J. Appl. Phys. Vol. 101 (2007), p.084116.

[24] N. Sivakumar, A. Narayanasamy, B. Jeyadevan, J. R. Joseyphus and C. Venkateswaran: J. Phys. D: Appl. Phys. Vol. 41 (2008) p.245001.

[25] M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski and G.M. Luke: J. Mater. Chem. Vol. 19 (2009), p.5916.

[26] S. Lanfredi, A.C.M. Rodrigues: J. Appl. Phys. Vol. 86 (1999), p.2215.

Fetching data from Crossref.
This may take some time to load.