Germanium Dioxide Nanocubes with Different Size Distributions and Its Gibbs Free Energy Theory

Abstract:

Article Preview

A simple synthesis method for single crystal GeO2 nanocubes in a reverse micelle system was reported here. Hydrolysis of germanium tetrachloride (GeCl4) in a micelle system produces GeO2 nanocubes in the presence of oleylamine and cetyltrimethylammonium (CTAB). We found that we could obtain GeO2 nanocubes with monodisperse size distribution, bimodal size distribution and polydisperse size distribution by varying the reaction parameters. We put forward a feasible explain for this phenomenon with using Gibbs free energy theory, and this theory can give some meaningful guidance for preparing monodisperse nanomaterials.

Info:

Periodical:

Edited by:

Rongming Wang, Ying Wu and Xiaofeng Wu

Pages:

135-140

DOI:

10.4028/www.scientific.net/MSF.688.135

Citation:

H. Wang et al., "Germanium Dioxide Nanocubes with Different Size Distributions and Its Gibbs Free Energy Theory", Materials Science Forum, Vol. 688, pp. 135-140, 2011

Online since:

June 2011

Export:

Price:

$35.00

[1] Hosokawa M, Nogi K and Naito M Nanoparticle Technology Handbook. Elsevier Science: Oxford (2007).

[2] Rotello V M 2004 Nanoparticles: Building blocks for nanotechnology. Springer: New York Schmid G Nanoparticles. From Theory to Application. Wiley-VCH: Weinheim (2003).

[3] B. Niemann, P. Veit and K. Sundmacher: Langmuir Vol. 24 (2007), pp.24-4320.

[4] F. Michaux, J. L. Blin and M. J. Stebe: Langmuir Vol. 23 (2007), p.2138.

[5] D. Riabinina, C. Durand, M. Chaker, N. Rowell and F. Rosei: Nanotechnology Vol. 17 (2006), p.2152.

[6] R. Smirani, F. Martin, G. Abel, Y. Q. Wang and G. G. Ross: Nanotechnology Vol. 16 (2005), p.32.

[7] M. Bruchez, J. M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos: Science Vol. 281 (1998), p. (2013).

[8] M. J. Werner and S. R. Fribery: Phys. Rev. Lett. Vol. 79 (1997), p.4143.

[9] Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee and S. T. Lee: Appl. Phys. Lett. Vol. 74 (1999), p.3824.

[10] K. P. Kalyanikutty, G. Gundiah, A. Govindaraj and C. Rao: J. Nanosci. Nanotechnol. Vol. 5 (2005), p.425.

[11] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee and S. T. Lee: Adv. Mater. Vol. 14, (2002) , p.1396.

[12] M. Adachi, K. Nakagawa, K. Sago, Y. Murata and Y. Nishikawa: Chem. Comm. Vol. 18, (2005) p.2381.

[13] P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee and E. Suh : J. Chem. Phys. Vol. 121 (2004), p.441.

[14] H. P. Wu, J. F. Liu, M. Y. Ge, L. Niu, Y. Zeng, Y. Wang, G. Lv, L . Wang, G. Zhang and J. Z. Jiang: Chem. Mater. Vol. 18 (2006), p.1817.

[15] M. Meinders, W. Kloek and T. Vliet: Langmuir Vol. 17 (2001), p.3923.

[16] S. Yang and L. Gao: J. Am. Chem. Soc. Vol. 128, (2006), p.9330.

[17] A. Taubert, U. Wiesler and K. Mullen: J. Mater. Chem Vol. 13 (2003), p.1090.

In order to see related information, you need to Login.