Phase and Shape Evolution of CdS Nanocrystallites under Solvothermal Conditions


Article Preview

CdS nanocrystallites with different morphologies have solvothermally prepared with ethylenediamine (en) and glycol as solvents. Solvent-dependent experiments were carried out by adjusting the ratios of en/glycol to investigate the effects of the solvents on the product phase formation and morphology. It was found that the morphology of CdS nanocrystallite develops from a rough spherical nanoparticle to a rod-, twinrod-, and tetrapod-shaped nanoparticle by increasing the ratio of en/glycol, meanwhile the phase composition changes from coexistence of tetragonal zinc blende CdS and hexagonal wurtzite CdS to pure hexagonal wurtzite CdS. Based on the experimental results, a possible shape evolution mechanism of CdS nanocrystallites is simply discussed.



Edited by:

Rongming Wang, Ying Wu and Xiaofeng Wu






G. Xu et al., "Phase and Shape Evolution of CdS Nanocrystallites under Solvothermal Conditions", Materials Science Forum, Vol. 688, pp. 195-200, 2011

Online since:

June 2011




[1] A.P. Alivisatos, Science Vol. 271 (1996), p.933.

[2] J.R. Heath, Acc Chem. Res., Vol. 32 (1999), p.388.

[3] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, et al, Nature Vol. 404 (2000), pp.59-61.

DOI: 10.1038/35003535

[4] J.J. Urban, W.S. Yun, Q. Gu, H. Park, J. Am. Chem. Soc., Vol. 124 (2002), p.1186.

[5] C.M. Lieber, Solid State Commun., Vol. 107 (1998), p.607.

[6] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science, Vol. 291 (2001), p. (1947).

[7] V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science, Vol. 291 (2001), p.2115.

[8] T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. Ei-Sayed, Scince Vol. 272 (1996), p. (1924).

[9] R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Science Vol. 294 (2001), pp.1901-03.

[10] Q.Q. Wang, G. Xu, G.R. Han, Cry. Grow. Design, Vol. 6 (2006), pp.1776-80.

[11] G. Xu, Z.H. Ren, P.Y. Du, W.J. Weng, G. Shen, G.R. Han, Adv. Mater., Vol. 17 (2005), pp.907-10.

[12] X.G. Peng, J. Wickham, A.P. Alivisatos, J. Am. Chem. Soc., Vol. 120 (1998), pp.5343-44.

[13] Y.D. Li, H.W. Liao, Y. Ding, Y. Fan, Y. Zhang, Y.T. Qian, Inorg. Chem., Vol. 38 (1999), pp.1382-87.

[14] Q.Q. Wang, G. Xu, G.R. Han, J Solid State Chem., Vol. 178 (2005), pp.2680-85.

[15] F. Gao, Q.Y. Lu, S.H. Xie, D.Y. Zhao, Adv. Mater., Vol. 14 (2002), pp.1537-40.

[16] L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc., Vol. 122 (2000), pp.12700-12706.

[17] H. Reiss, J. Chem. Phys. Vol. 19 (1951), pp.482-487.

[18] Y.D. Yin, A.P. Alivisatos, Nature, Vol. 437 (2005), pp.664-670.

[19] L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Nature Materials, Vol. 2 (2003), pp.382-385.

In order to see related information, you need to Login.