Preparation and Characterization of Graphene Oxide-ZnO Nanocomposites


Article Preview

A composite of graphene oxide supported by ZnO nanoparticles (GO-ZnO nanocomposites) was prepared through a simple chemical approach. The lamellar graphite oxide sheets in this composite were exfoliated and decorated randomly by ZnO nanoparticles with a mean size of 20 nm. In addition, the photocatalytic experiments exhibit that the GO-ZnO nanocomposites have a good photocatalytic activity on degradation of methylene blue under UV light irradiation. This method provides a facile and straightforward approach to deposit ZnO nanoparticles onto the graphene oxide sheets and may be readily extended to the preparation of other classes of hybrids based on GO sheets for technological applications.



Edited by:

Rongming Wang, Ying Wu and Xiaofeng Wu






W. B. Zou et al., "Preparation and Characterization of Graphene Oxide-ZnO Nanocomposites", Materials Science Forum, Vol. 688, pp. 228-232, 2011

Online since:

June 2011




[1] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim: Rev. Mod. Phys. Vol. 81 (2009), p.109.

[2] H.Q. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace and D. Li: Adv. Mater. Vol. 20 (2008), p.3557.

[3] A.K. Geim and K.S. Novoselov: Nat. Mater. Vol. 6 (2007), p.183.

[4] M.I. Katsnelson: Mater. Today Vol. 10 (2007), p.20.

[5] D. Li and R.B. Kaner: Science Vol. 320 (2008), p.1170.

[6] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov: Nature Vol. 438 (2005), p.197.

DOI: 10.1038/nature04233

[7] J. Wu, W. Pisula and K. Müllen: Chem. Rev. Vol. 107 (2007), p.718.

[8] S. Stankovich, R.D. Piner, S.T. Nguyen and R.S. Ruoff: Carbon Vol. 44 (2006), p.3342.

[9] H. He, J. Klinowski, M. Forster and A. Lerf: Chem. Phys. Lett. Vol. 287 (1998), p.53.

[10] A. Lerf, H. He, M. Forster and J. Klinowski: J. Phys. Chem. B Vol. 102 (1998), p.4477.

[11] L. Jiang and L. Gao: Mater. Chem. Phys. Vol. 91 (2005), p.313.

[12] Y. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T.S. Wee, J.T.L. Thong and C.H. Sow: Adv. Mater. Vol. 18 (2006), p.587.

DOI: 10.1002/adma.200501918

[13] F. Vietmeyer, B. Seger and P.V. Kamat: Adv. Mater. Vol. 19 (2007), p.2935.

[14] N. Zhang, J. Sun, D. Jiang, T. Feng and Q. Li: Carbon Vol. 47 (2009), p.1214.

[15] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano Vol. 4 (2010), p.2822.

[16] J. Shen, Y. Hu, M. Shi, N. Li, H. Ma and M. Ye: J. Phys. Chem. C Vol. 114 (2010), p.1498.

[17] W.S. Hummers Jr and R.E. Offeman: J. Am. Chem. Soc. Vol. 80 (1958), p.1339.

[18] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy: Chem. Mater. Vol. 11 (1999), p.771.

[19] H.K. Jeong, P.L. Yun, R.J.W.E. Lahaye, M.H. Park, H.A. Kay, J.K. Ick, C.W. Yang, Y.P. Chong, R.S. Ruoff and H.L. Young: J. Am. Chem. Soc. Vol. 130 (2008) , p.1362.

[20] C. Xu, X. Wang and J. Zhu: J. Phys. Chem. C Vol. 112 (2008), p.19841.

[21] D. Cai and M. Song: J. Materials Chemistry Vol. 17 (2007), p.3678.

[22] D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace: Nat. Nanotechnol. Vol. 3 (2008), p.101.

[23] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff: Nature Vol. 442 (2006), p.282.

DOI: 10.1038/nature04969

[24] E.A. Meulenkamp: J. Phys. Chem. B Vol. 102 (1998), p.5566.

In order to see related information, you need to Login.