Synthesis and Characterization of Core-Shell Structured Bimagnetic Cobalt-Coated Iron Nanoparticles


Article Preview

Core-shell structured nanoparticles with ferromagnetic core (Fe) and shell (Co) were prepared by a chemical reduction method. By adjusting the deposition parameters, the core-shell particles with various Fe:Co molar ratios were obtained. The saturation magnetization decreased with the increase of Cobalt content. The properties of core-shell nanoparticles synthesized under a magnetic field were compared with those prepared without a magnetic field. For the nanoparticles prepared without magnetic filed, the coercivity (Hc) increased with increasing Co content due to the large anisotropy of Co, whereas for the nanoparticles prepared under a magnetic field, the Hc was much lower. The ZFC/FC curves suggested that these particles were ferromagnetic at room temperature. The anisotropy constant K at 340K for core-shell nanoparticle is estimated to be 0.83×105 erg/cm3. The second ferromagnetic phase transition may occur at the temperature lower than 25 K, which led to a drastic change of magnetization at low temperatures.



Edited by:

Rongming Wang, Ying Wu and Xiaofeng Wu






K.P. Su et al., "Synthesis and Characterization of Core-Shell Structured Bimagnetic Cobalt-Coated Iron Nanoparticles", Materials Science Forum, Vol. 688, pp. 370-375, 2011

Online since:

June 2011




[1] N. Sounderya and Y. Zhang, Recent Patents on Biomedical Engineering 1( 2008), p.34.

[2] S. T Selvan, P.K. Patra, C.Y. Ang, J.Y. Ying, Angew. Chem. Int. Ed. 40 (2007), p.1.

[3] Y. P. Bao, H. Calderon, K. M. Krishnan: J. Phys. Chem. C. 111(2007), p. (1941).

[4] S. Peng, J. Xie, S.H. Sun: J Solid State Chem 181 (2008), p.1560.

[5] R. M. Wang, O. Dmitrieva, M. Farle, G. Dumpich, H. Q. Ye, H. Poppa, R. Kilaas, C. Kisielowsk, Physical Review Letters, 100 (2008), p.017205.

[6] T. Seto, H. Akinaga, F. Takano, K. Koga, T. Orii, and M. Hirasawa:J. Phys. Chem. B, Vol. 109, (2005) , p.13405.

[7] H. Zeng, S.H. Sun, J. Li, Z. L. Wang, and J. P. Liu: Appl. Phys. Lett. 85 (2004), p.792.

[8] Y.L. Hou, S. Gao: J . Alloy. Compd. 365 (2004), p.112.

[9] N. Mattoso, V. Fernandes, M. Abbate, W. H. Schreiner, and D. H. Mosca: Electrochem. Solid. State. Lett., 4 (4) (2001), p. C20.

DOI: 10.1149/1.1353161

[10] M. Shiga and M. Yamamoto:J. Phys.: Condens. Matter 13 (2001), p.6359.

[11] Q. Wang X.W. Yang S.M. Li,Y. Chen,H. Zhang,H. Yang:J. Magn. Magn. Mater. 320(2008), p.3297.

[12] R.D. Zysler, C.A. Ramos, H. Romero, A. Ortega:J. Mater. Sci. 36 (2001) , p.2291.

[13] P. Fulmer, J. Kim, A. Manthiram, and J.M. Sanchez: ANRCP. Apr. 30, (1999), p.23.

[14] Y . Zhang, L . Sun, Y. Zhai, H. B. Huang, R. S. Huang, H. X . Lu., H. R . Zhai:J. Appl. Phys. 101, (2007), p. 09J109.

[15] A.V. Morozkin, Y. Mozharivskyj, V. Svitlyk, R. Nirmala, O. Isnard, P. Manfrinetti,A. Provino and C. Ritter:J. Solid. State. Chem. 183 (2010) , p.1314.

DOI: 10.1016/j.jssc.2010.04.002

[16] J. G. Li., Y . Qin, X. L . Kou, H. Y. He, D. K. . Song : Mater. Lett. 58, (2004), p.2506.

In order to see related information, you need to Login.