In Situ Studies of Light Metals with Synchrotron Radiation and Neutrons

Abstract:

Article Preview

High-energy X-rays and neutrons offer the large penetration depths that are often required for the determination of bulk properties in engineering material research. In addition, new sources provide very high intensities on the sample, which can be used not only for high spatial resolution using very small beams, but also for high time resolution in combination with a fast detector. This opens up possibilities for a wide range of specific engineering in situ experiments. Typical examples that are already widely used are heating or tensile testing in the beam. However, there are also more challenging experiments in the field of light metals, like e.g. friction stir welding, dilatometry, solidification, or cutting. Selected examples are presented.

Info:

Periodical:

Edited by:

Hajo Dieringa, Norbert Hort and Karl Ulrich Kainer

Pages:

192-197

DOI:

10.4028/www.scientific.net/MSF.690.192

Citation:

P. Staron et al., "In Situ Studies of Light Metals with Synchrotron Radiation and Neutrons", Materials Science Forum, Vol. 690, pp. 192-197, 2011

Online since:

June 2011

Export:

Price:

$35.00

[1] W. Reimers, A. -R. Pyzalla, A. Schreyer, H. Clemens (eds. ): Neutrons and synchrotron radiation in engineering materials science, Wiley VCH, Weinheim (2010).

DOI: 10.1002/9783527621927

[2] http: /www. esss. se.

[3] A. Pyzalla, W. Reimers, K. -D. Liss, Mater. Sci. Forum 347–349 (2000) 34–39.

[4] P. Staron, N. Schell, A. Haibel, F. Beckmann, T. Lippmann, L. Lottermoser, J. Herzen, T. Fischer, M. Koçak , A. Schreyer, Mater. Sci. Forum 639–642 (2010) 2470–2475.

DOI: 10.4028/www.scientific.net/msf.638-642.2470

[5] P. Staron, T. Fischer, T. Lippmann, A. Stark, S. Daneshpour, D. Schnubel, E. Uhlmann, R. Gerstenberger, B. Camin, W. Reimers, E. Eidenberger, H. Clemens, N. Huber, A. Schreyer, Adv. Eng. Mater., DOI: 10. 1002/adem. 201000297.

DOI: 10.1002/adem.201000297

[6] K. -D. Liss, A. Bartels, A. Schreyer, H. Clemens: Textures Microstruct. 35 (2003) 219.

[7] E. Uhlmann, R. Gerstenberger, S. Herter, T. Hoghé, W. Reimers, B. Camin, R.V. Martins, A. Schreyer, T. Fischer, Prod. Eng. Res. Devel. 5 (2010) 1–8.

DOI: 10.1007/s11740-010-0266-x

[8] Y. -W. Kim, D. Morris, R. Yang, C. Leyens (eds. ): Structural Aluminides for Elevated Temperature Applications, TMS, Warrendale, PA, USA (2008).

[9] M. Takeyama, S. Kobayashi: Intermetallics 13 (2005) 993.

[10] F. Appel, M. Oehring, J.D.H. Paul: Adv. Eng. Mater. 8 (2006) 371.

[11] H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, A. Bartels: Adv. Eng. Mater. 10 (2008) 707.

[12] K. -D. Liss, T. Schmoelzer, K. Yan, M. Reid, M. Peel, R. Dippenaar, H. Clemens: J. Appl. Phys. 106 (2009) 113526.

[13] A. Stark, M. Oehring, F. Pyczak: Proc. MRS 2010 Fall Meeting, Boston, MA.

[14] W. Kurz, D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Switzerland, 4th edition (1998).

[15] J.A. Dantzig, M. Rappaz: Solidification, EPFL Press, Distributed by CRC Press (2009).

[16] S.B. Yi, H. -G. Brokmeier, R.E. Bolmaro, K.U. Kainer, T. Lippmann: Scripta Mater. 51 (2001) 455–460.

[17] F. Witte, J. Fischer, F. Beckmann, M. Störmer, N. Hort: Scripta Materialia 58 (2008) 453–456.

DOI: 10.1016/j.scriptamat.2007.10.039

[18] P. Gunde, A. Schiffl, P.J. Uggowitzer: Mater. Sci. and Eng. A 527 (2010) 7074–7079.

[19] K. Hu, A.B. Phillion, D.M. Maijer, S.L. Cockcroft: Scripta Mater. 60 (2009) 427–430.

[20] Z.S. Zhen, N. Hort, Y.D. Huang, O. Utke, N. Petri, K.U. Kainer: Int. Journal Cast Met. Res. 22 (2009) 331–334.

[21] G. Kostorz, in: Treatise on Materials Science and Technology, Vol. 15: Neutron Scattering, G. Kostorz, H. Herman (eds. ), Academic Press, New York (1979) 227–289.

DOI: 10.1016/b978-0-12-341815-9.50013-6

[22] P. Staron, E. Eidenberger, M. Schober, M. Sharp, H. Leitner, A. Schreyer, H. Clemens, J. Physics: Conf. Series 247 (2010) 012038.

[23] http: /www. frm2. tu-muenchen. de.

In order to see related information, you need to Login.