Introduction to the Interdependence Theory of Grain Formation and its Application to Aluminium, Magnesium and Titanium Alloys

Abstract:

Article Preview

The Interdependence Theory is a theoretical description of grain formation that links heterogeneous nucleation to grain growth early in the initial transient of a previously nucleated grain. Thus nucleation is the result of a repeating cycle of growth and nucleation events moving towards the thermal centre of a casting. The principles of this theory are introduced and then the Interdependence equation that embodies the Interdependence Theory, is applied to the prediction of experimental grain size data for aluminium, magnesium and titanium-based alloy systems.

Info:

Periodical:

Edited by:

Hajo Dieringa, Norbert Hort and Karl Ulrich Kainer

Pages:

206-209

Citation:

D. H. St. John et al., "Introduction to the Interdependence Theory of Grain Formation and its Application to Aluminium, Magnesium and Titanium Alloys", Materials Science Forum, Vol. 690, pp. 206-209, 2011

Online since:

June 2011

Export:

Price:

$38.00

[1] M. Qian, P. Cao, M.A. Easton, S.D. McDonnald, D.H. StJohn: Acta. Mater. 58 (2010) p.3262.

[2] D.H. StJohn, M. Qian, M.A. Easton, P. Cao: submitted to Acta. Mater. (2010).

[3] M.A. Easton, D.H. StJohn: Metall. Mater. Trans. A. 36A (2005) p. (1911).

[4] D.H. StJohn, P. Cao, M. Qian, M.A. Easton: Adv. Engng. Mater. 2007; 9: 739.

[5] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow: Acta. Mater. 48 (2000) p.2823.

[6] D. StJohn, L. Hogan: J. Mater. Sci. 17 (1982) p.2413.

[7] Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F-Y. Xie: Mater. Sci. Engng. A. 363 (2003) p.140.

[8] T.E. Quested, A.L. Greer: Acta. Mater. 52 (2004) p.3859.

[9] H. Jung, N. Mangelinck-Noël, C. Bergman, B. Billia: J. Alloy. Compd. 477 (2009) p.622.

[10] P. Cao, M. Qian, D. St John: Magnesium Technology 2005, Eds N.R. Neelameggham, H.I. Kaplan, B.R. Powell, San Francisco, CA, USA: The Minerals, Metals and Materials Society, Warrendale, PA (2005) p.297.

[11] K. Zhou, H. P. Wang, J. Chang, B. Wei: Phil. Mag. Letters, 90: 6, (2010) p.455.

[12] P.G. Sanders, M.O. Thompson, T.J. Renk, and M.J. Aziz: Metall. Mater. Trans. A, 32A (2001) p.2969.

[13] M.J. Bermingham, S.D. McDonald, D.H. StJohn, M.S. Dargusch: J. Alloy. Compd 481(1-2) (2009) p. L20.

[14] M.J. Bermingham, S.D. McDonald, D.H. StJohn, M.S. Dargusch: Phil. Mag. 90: 6 (2010) p.699.

[15] M.J. Bermingham, S.D. McDonald, D.H. StJohn, M.S. Dargusch: J. Mater. Res. 24(4) (2009) p.1529.

[16] R. Trivedi, W. Kurz: Acta. Mater. 42 (1994) p.15.

[17] Xinbo Yang, K. Fujiwara, K. Maeda, J. Nozawa, H. Koizumi, S. Uda: Appl. Phys. Lett. 98 (2011) 012113.

[18] http: /www. engineeringtoolbox. com/fusion-heat-metals-d_1266. html.

Fetching data from Crossref.
This may take some time to load.