Liquid Atomic Structure and Viscosity of Al-Si Alloys with and without Sr

Abstract:

Article Preview

The liquid structure of Al-Si hypoeutectic binary alloys with and without the addition of 0.04 wt.% Sr was characterized by diffraction experiments using a high energy X-Ray (Synchrotron) beam source. The diffraction data for all the alloys were obtained at various melt temperatures. Reverse Monte Carlo (RMC) analysis was carried out using the diffraction experimental data to quantify the partial pair distribution function (PPDF). Further, the partial pair distribution function and the liquid atomic structure information were used in a semi empirical model to evaluate the viscosity of these liquid alloys at various temperatures.

Info:

Periodical:

Edited by:

Hajo Dieringa, Norbert Hort and Karl Ulrich Kainer

Pages:

222-225

DOI:

10.4028/www.scientific.net/MSF.690.222

Citation:

M. Jeyakumar et al., "Liquid Atomic Structure and Viscosity of Al-Si Alloys with and without Sr", Materials Science Forum, Vol. 690, pp. 222-225, 2011

Online since:

June 2011

Export:

Price:

$38.00

[1] A. Hellawell: Prog. Mater. Sci. Vol. 15 (1970), p.3.

[2] S. Shankar, Y.W. Riddle and M.M. Makhlouf: Acta Mater. Vol. 52 (2004), p.4447.

[3] M.M. Makhlouf and H.V. Guthy: J. Light Metals Vol. 1 (2001), p.199.

[4] G. Sigworth: Int. J. Metalcasting Vol. 2 (2008), p.19.

[5] J. Campbell, G. Sigworth and J. Jorstad: Int. J. Metalcasting Vol. 3 (2009), p.65.

[6] N. Tonmukayakul, M.M. Makhlouf and S. Shankar: Int. J. Metalcasting Vol. 3 (2009), p.7.

[7] K. Nogita, S.D. McDonald and A.K. Dahle: Phil. Mag. Vol. 84 (2004), p.1683.

[8] S. Shankar, M.M. Makhlouf and Y.W. Riddle: AFS Trans. Vol. 113 (2005), p.145.

[9] A.T. Dinsdale and P.N. Quested: J. Mater. Sci. Vol. 39 (2004), p.7221.

[10] X. Song, X. Bian, J. Zhang and J. Zhang: J. Alloys Comp. Vol. 479 (2009), p.670.

[11] M. Born and H.S. Green: Proc. R. Soc. A Vol. 190 (1947), p.455.

[12] M. Kitajima, M. Shimoji and K. Saito: Trans. Japan Inst. Metals Vol. 17 (1976), p.582.

[13] G.M. Bhuiyan, I. Ali and S.M.M. Rahman: Physica B Vol. 334 (2003), p.147.

[14] G. Kresse: J. Non Cryst. Solids Vol. 312-314 (2002), p.52.

[15] P. Tangney and S. Scandolo: J. Chem. Phys. Vol. 117 (2002), p.8898.

[16] T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals (Clarendon Press, 1988).

[17] R. Bansal: J. Phys. C Vol. 6 (1973), p.3071.

[18] T.E. Faber: Introduction to the theory of liquid metals (University Press, 1972).

[19] E. Nd.C. Andrade: Phil. Mag. Vol. 17 (1934), p.698.

[20] B. Djemili, L. Martin-Garin, R. Martin-Garin and P. Hicter: J. Phys. Colloques Vol. 41 (1980), p. C8-363.

DOI: 10.1051/jphyscol:1980891

[21] S. Shankar, P. Srirangam, M. Jeyakumar, M. Walker, M. Hamed and M.J. Kramer: TMS 2009 Annual Meeting & Exhibition (2009), p.173.

[22] R.L. McGreevy and L. Pusztai: Mol. Simul. Vol. 1 (1988), p.359.

[23] R.L. McGreevy: J. Phys. Condens. Matter Vol. 3 (1991), p. F9.

[24] R.L. McGreevy and P. Zetterstrom: J. Non-Cryst. Solids Vol. 293-295 (2001), p.297.

[25] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai and E. Ma: Nature Vol. 439 (2006), p.419.

[26] P. Srirangam, M.J. Kramer and S. Shankar: Acta Mater. Vol. 59 (2011), p.503.

[27] M.M. Malik, M. Jeyakumar, M.S. Hamed, M.J. Walker and S. Shankar: J. Non Newtonian Fluid Mech. Vol. 165 (2010), p.733.

In order to see related information, you need to Login.