Predicting Internal Oxidation: Building on the Wagner Model


Article Preview

Wagner’s 1959 diffusion model of the internal oxidation process provided a method of predicting the rate at which a binary alloy was penetrated by dissolved oxygen as it precipitated the more reactive (but dilute) alloy component. Parabolic kinetics were predicted to depend on oxygen permeability in the unreacted alloy solvent and also, in cases where the reactive component was sufficiently mobile, the diffusion coefficient of the latter. The model has proven very successful, but is restricted to single oxidant-binary alloy systems, in which the precipitated oxide has extremely low solubility. This paper reviews recent results on a number of internal precipitation processes which cannot be described with the Wagner theory. These include formation of low stability carbides and nitrades; internal precipitation driven by multiple oxidants; the templating effects of prior precipitates on subsequently formed corrosion products; cellular precipitation morphologies; internal interface diffusion effects; volume changes in the reaction zone and the effects upon them of simultaneous external scaling.



Edited by:

Toshio Maruyama, Masayuki Yoshiba, Kazuya Kurokawa, Yuuzou Kawahara and Nobuo Otsuka






D. J. Young "Predicting Internal Oxidation: Building on the Wagner Model", Materials Science Forum, Vol. 696, pp. 1-11, 2011

Online since:

September 2011





[1] R.C. John, in: Corrosion 96, NACE, Houston, TX (1996), p.171.

[2] D.J. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier (2008).

[3] C. Wagner: Z. Elektrochem., 63 (1959) p.772.

[4] R.A. Rapp: Corrosion 21 (1965), p.382.

[5] R.A. Rapp: Acta Met., 0 (1961), p.730.

[6] J.W. Park and C. Altstetter: Met. Trans. A, 18A (1987), p.43.

[7] H.J. Grabke and E.M. Peterson: Scripta Met., 12 (1978), p.1111.

[8] H.A. Wriedt and O.D. Gongalez: Trans. AIME, 221 (1961) 532.

[9] S.K. Bose and H.J. Grabke: Z. Metallk., 69 (1978), p.8.

[10] T. Wada, H. Wada, J.F. Elliott and J. Chipman: Met. Trans., 2 (1971), p.2199.

[11] J.H. Swisher and E.T. Turkdogan: Trans. AIME, 239 (1967), p.426.

[12] A. Schnaas and H.J. Grabke: Oxid. Met., 12 (1978), p.387.

[13] G.M. Smith, D.J. Young and D.L. Triumm: Oxid. Met, 18 (1982), p.229.

[14] D.J. Young: Carburisation and Metal Dusting, in Shreir's Corrosion, eds. R. Cottis, R. Lindsay, S. Lyon, D.J.D. Scantlebury, F.H. Stott, M.J. Graham, Elsevier, Amsterdam (2009).

[15] S. Ford: PhD Thesis, University of New South Wales (2005).

[16] J.S. Kirkaldy: Canad. Met. Q. 9 (1969), p.35.

[17] E.K. Ohriner and J.F. Morral: Scripta Met., 13 (1979), p.7.

[18] D.J. Young and O. Ahmed: Mater. Sci. Forum, 269-372 (2001), p.93.

[19] M. Udyavar and D.J. Young: Corros. Sci., 42 (2000), p.861.

[20] S. Ford, P.R. Munroe and D.J. Young, in: John Stringer Symposium eds. P.T. Tortorelli, I.G. Wright and P.Y. Hou, ASM International, Materials Park, OH (2003), p.77.

[21] H.J. Christ: Mater. Corros., 49 (1998), p.258.

[22] S. Ford, P.R. Munroe, D. McGrouther and P.R. Munroe: Mater. High Temp., 22 (2005), p.351.

[23] V.I. Mozchan: Izv. Chem. Metall., 8 (1979), p.92.

[24] O. Ahmed, and D.J. Young in: High Temperature Corrosion and Materials Chemistry II, eds. M.J. McNallan, E.J. Opila, T. Maruyama and T. Narita, The Electrochemical Society, Inc., Pennington NJ (2000), p.77.

[25] D. Turnbull: Acta Met., 3 (1955), p.55.

[26] S.I. Ford, P.R. Munroe and D.J. Young: Mater. High Temp., 17 (2000), p.279.

[27] H. Hindam and D. P. Whittle: J. Mater. Sci., 18 (1983), p.1389.

[28] M.A.A. Motin, J. Zhang, P.R. Munroe and D.J. Young: Corros. Sci., 52 (2010), p.3280.

[29] J. Megasur and G.H. Meier: Met. Trans. A, 7A (1976), p.1133.

[30] F.H. Stott, G.C. Wood, D.P. Whittle, B.D. Bastow, Y. Shida and A. Martinez-Villafone: Solid State Ionics, 12 (1984), p.365.

[31] M.A.A. Motin, J. Zhang and D.J. Young: J. Electrochem. Soc, 157 (2010), p.325.

[32] J.L. Meijering in: Advances in Materials Research, edited by H. Herman, Wiley-Interscience, New York (1971), p.1.

[33] C. Spengler and J. Viswanathan: Met. Trans., 3 (1972), p.161.

[34] J.A. Colwell and R.A. Rapp: Met. Trans. A, 17A (1986), p.1065.

[35] D.J. Young and S. Watson: Oxid. Met., 44 (1995), p.239.

[36] M. Hänsel, C.A. Boddington and D.J. Young: Corros., Sci., 45 (2003), p.967.

[37] W. Betteridge: The Nimonic Alloys, E. Arnold, London (1959).

[38] L.S. Darken: Trans. AIME, 54 (1961), p.600.

[39] H.C. Yi, S.W. Guan, W.W. Smeltzer and A. Petric: Acta Met. Mat., 42 (1994), p.981.

[40] Y. Shida, F.H. Stott, B.D. Bastow, D.P. Whittle and G.C. Wood: Oxid. Met., 18 (1982), p.93.

[41] N. Belen, P. Tomascewicz, and D.J. Young: Oxid. Met., 22 (1984), p.227.

[42] H.C. Yi, S. -Q. Shi, W.W. Smeltzer and A. Petrix: Oxid. Met., 43 (1995), p.115.

[43] D. Oquab, N. Xu, D. Monceau and D. J. Young: Corros. Sci., 52 (2010), p.255.

In order to see related information, you need to Login.