Scale Deformation and Failure in Hot Rolling: Understanding and Simulation


Article Preview

This work reviews recent advances in research on oxide scale behaviour in hot rolling processes. Presenting novel approaches, the paper emphasizes the crucial role of reproducible experiments to elucidate the scale properties coupled with numerical analysis to develop quantitative models with predictive accuracy. Oxide scale failure is predicted taking into consideration the main physical phenomena. The most critical for scale deformation and failure parameters are measured during testing and depend on the morphology, scale growth temperature. They are also very sensitive to the chemical content of the underlying metal. The work integrates the combined finite/discrete element analysis with a range of experiments each provide partial insight into oxide fracture, friction, heat transfer, descaling and pick-up, mechanical intermixing taking place near the stock surface among others.



Edited by:

Toshio Maruyama, Masayuki Yoshiba, Kazuya Kurokawa, Yuuzou Kawahara and Nobuo Otsuka




M. Krzyzanowski, "Scale Deformation and Failure in Hot Rolling: Understanding and Simulation", Materials Science Forum, Vol. 696, pp. 144-149, 2011

Online since:

September 2011




[1] M. Krzyzanowski, J.H. Beynon and D.C.J. Farrugia: Oxide Scale Behavior in High Temperature Metal Processing, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2010).

[2] Y.H. Li, M. Krzyzanowski, J.H. Beynon and C.M. Sellars: Acta Metallurgica Sinica, Vol. 13 (2000), p.359.

[3] G.O. Rincon: Ph.D. thesis, University of Sheffield, Sheffield, UK, (2006).

[4] M. Krzyzanowski and J.H. Beynon: Steel Research, Vol. 70 (1999), p.22.

[5] M. Krzyzanowski and J.H. Beynon: J. Mater. Proc. Techn., Vol. 125-126 (2002), p.398.

[6] L. Suárez, Y. Houbaert, X. Vanden Eynde and R. Colás: Corrosion Sci., Vol. 51 (2009), p.309.


[7] C. Grenier, P. -O. Bouchard, P. Montmitonnet and M. Picard: Int. J. Mater. Form., Vol. 1 (2008), p.1227.

[8] H.R. Le, M.P.F. Sutcliffe, P.Z. Wang and G.T. Burstein, Acta Materialia, Vol. 52 (2004), p.911.

[9] H. Echsler, S. Ito and M. Schütze: Oxidation of Metals, Vol. 60 (3/4) (2003), p.241.

[10] M. Trull: Ph.D. thesis, University of Sheffield, Sheffield, UK, (2003).

[11] M. Krzyzanowski, W. Yang, C.M. Sellars and J.H. Beynon: Mater. Sci. Technol., Vol. 19(1) (2003), p.109.

[12] M. Krzyzanowski, J.H. Beynon and C.M. Sellars: Metallurgical and Materials Transactions B, Vol. 31B (6) (2000), p.1483.

[13] A. Bakker: Int. J. Pres. Ves. & Piping, Vol. 14 (1983), p.153.

[14] A. Afseth, J.H. Nordlien, G.M. Scamans and K. Nisancioglu: Corros. Sci., Vol. 44 (2002), p.2491.

[15] M. Krzyzanowski, M.F. Frolish, W.M. Rainforth and J.H. Beynon: Computer Methods in Materials Science, Vol. 7 (2007), p.1.

[16] E. Oñate and J. Rojek: Comput. Methods Appl. Mech. Engrg., Vol. 193 (2004), p.3087.

[17] M. Krzyzanowski and W.M. Rainforth in: Proc. 4th Int. Conference on Tribology in Manufacturing Processes ICTMP 2010, eds. E. Felder and P. Montmitonnet, 13 – 15 June, Nice, France, Presses des Mines, Paris, p.877.