Oxidation of Metallic Materials in Simulated CO2/H2O-Rich Service Environments Relevant to an Oxyfuel Plant

Abstract:

Article Preview

In the present study the oxidation behaviour of a number of candidate alloys for heat exchanging components was investigated in model gas mixtures containing high amounts of CO2 and/or water vapour in the temperature range 550-700°C up to exposure times of 1000 h. During exposure in Ar/CO2 and Ar/CO2/H2O base gas mixtures at 550-650°C the oxidation rates and scale compositions of martensitic 9-12%Cr steels were similar to those previously observed in steam environments. Thin and protective Cr-rich oxide scales which are commonly found during air oxidation was observed locally on the specimens surfaces after oxidation in Ar-(1-3%)O2-CO2. The tendency for protective chromia base scale formation increased when 3% oxygen was added, especially for the 12%Cr steel. When iron base oxide scales were formed on the metal surface, the martensitic steels tended to exhibit carburisation whereby the extent was reduced by increasing the water vapour and oxygen contents. All three studied austenitic alloys exhibited very slow scale growth rates at 550°C, however, at and above 600°C the steels with lower Cr content started to form two-layered iron rich surface oxide scales whereby the outer oxide was prone to spallation upon thermal cycling. The high-Cr austenitic steel 310N and the nickel base alloy 617 formed very thin, Cr-rich oxide scales at all used test temperatures and atmospheres. For those two materials the oxidation behaviour in gases containing water vapour in combination with intentionally added oxygen was affected by formation of volatile chromium oxyhydroxide.

Info:

Periodical:

Edited by:

Toshio Maruyama, Masayuki Yoshiba, Kazuya Kurokawa, Yuuzou Kawahara and Nobuo Otsuka

Pages:

194-199

DOI:

10.4028/www.scientific.net/MSF.696.194

Citation:

W.J. Quadakkers et al., "Oxidation of Metallic Materials in Simulated CO2/H2O-Rich Service Environments Relevant to an Oxyfuel Plant", Materials Science Forum, Vol. 696, pp. 194-199, 2011

Online since:

September 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.