Characterization of Thermally Grown Oxide on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating


Article Preview

This paper presents the results of a study of the microstructure and oxidation behavior of thermal barrier coating (TBC) with air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coat and CoNiCrAlY bond coat deposited using two different spraying techniques, low pressure plasma spray (LPPS) and cold spray (CS). The objective is to investigate the thermally grown oxide (TGO) thickness and oxide scale composition of TBC subjected to isothermal oxidation and creep tests at 900 °C by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDX) analyses in order to evaluate the reliability of the CS technique. It was found that the TGO thicknesses for TBC with CS bond coats were smaller and the TGO was composed of mainly alumina with little or no mixed oxides. TGO growth rate was also affected by the applied stress. Smaller TGO thicknesses were observed for the non-creep TBC for both CS and LPPS bond coats. Overall findings indicate that the oxidation behavior of the TBC with CS bond coat is superior compared to that of the TBC with LPPS bond coat.



Edited by:

Toshio Maruyama, Masayuki Yoshiba, Kazuya Kurokawa, Yuuzou Kawahara and Nobuo Otsuka




A. Manap et al., "Characterization of Thermally Grown Oxide on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating", Materials Science Forum, Vol. 696, pp. 324-329, 2011

Online since:

September 2011




[1] E.P. Busso, J. Lin, S. Sakurai, M. Nakayama: Acta Mater. 49 (2001), pp.1515-1528.

[2] E.P. Busso, Z.Q. Qian: Acta Mater. 52 (2006), pp.325-338.

[3] E.P. Busso, L. Wright, H.E. Evans, L.N. McCartney, S.R.J. Saunders, S. Osgerby, J. Nunn: Acta Mater. 55 (2007), pp.1491-1503.


[4] M. Karadge, X. Zhao, M. Preuss, P. Xiao: Scripta Mater. 54 (2006), pp.639-644.

[5] K. Ogawa, K. Ito, T. Shoji, D.W. Seo, H. Tezuka, H. Kato: Journal of Thermal Spray Tech. 15 (2006), pp.640-651.

[6] D. Seo, K. Ogawa, Y. Nakao, H. Miura, T. Shoji: Surface & Coatings Tech. 203, (2009), p.1979-(1983).

[7] Q. Zhang, C.J. Li. G.J. Yang, S.C. Lui: Surface & Coatings Tech. 202 (2008), pp.3378-3384.

[8] S. M. Meier, D. K. Gupta: Trans. ASME 116 (1994), p.250.

[9] Information on www. organicfinishing. com.

[10] Information on www. asminternational. org.

[11] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov, V. Fomin, in: Cold Spray Technology Elsevier Ltd, Netherlands (2007), in press.