Fabrication of Oxide Nano-Rod Array Structures via Internal Oxidation of Alloys


Article Preview

A simple metallurgical process for fabricating oxide nano-rod array structures via internal oxidation is described. Some dilute alloys such as Ni(Al) and Fe(Al) solid solutions develop rod-like oxide precipitates after their internal oxidation at high-temperatures and under low oxygen partial pressures. The oxide nano-rod array structure can be developed on the metal substrate by removing the metallic matrix of the internal oxidation zone. Al2O3 or MAl2O4 (M=Ni or Fe) spinel nano-rod array structures were prepared by using M(Al) solid solutions. Pack cementation process to develop M(Al) solid solution surface layers was used for the fabrication of nano-rod array structures on substrates with desired shape. Near-net shape Ni substrates with oxide nano-rod array structures on their surfaces can be prepared by using pack cementation and internal oxidation.



Edited by:

Toshio Maruyama, Masayuki Yoshiba, Kazuya Kurokawa, Yuuzou Kawahara and Nobuo Otsuka




M. Nanko "Fabrication of Oxide Nano-Rod Array Structures via Internal Oxidation of Alloys", Materials Science Forum, Vol. 696, pp. 348-353, 2011

Online since:

September 2011





[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B, Gates, Y. Yin, F. Kim and Yan H: Adv. Mater. Vol. 15 (2003 ), p.353.

[2] M. Satoh, N. Tanaka, Y. Ueda, S. Ohshio and H. Saitoh: Jpn. J. Appl. Phys. Vol. 38 (1999), L586.

[3] M. Guo, P. Diao, Y. J. Ren, B. Wang and S. M. Cai: Acta Phys. Chim. Sin., Vol. 19 (2003), p.478.

[4] Y. B. Seung, W. S. Hee, W. H. Cnan and J. Park: Chem. Com. Vol. 10 (2004) p.1834.

[5] H. Ham, G. Shen, J. H. Cho, T. J. Lee, S. H. Seo and C. J. Lee: Chem. Phys. Lett. Vol. 404 (2005), p.69.

[6] Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park and T. W. Kang: J. Crystal Growth, Vol. 282 (2005), p.313.

[7] N. Takahashi, Y. Matsumoto and T. Nakamura: J. Phys. Chem. Solids, Vol. 67 (2006), p.665.

[8] Z. Yuan, H. Huang and S. Fan, Adv. Mater., Vol. 14 (2002), p.303.

[9] H. W. Huang, C. C. Kao, T. H. Hsueh, C. C. Yu, C. F. Lin, J. T. Chu, H. C. Kuo and S. C. Wang: Mate. Sci. Eng. Vol. 113B (2004) p.125.

[10] Y. Ando, Y. Nishibayashi and A. Sawabe: Dia. Related Mater. Vol. 13 (2005), p.633.

[11] S. Choi, H. Park, S. Lee and K. H. Koh: Thin Solid Films, Vol. 513 (2006), p.31.

[12] D. Bi, F. Wu, W. Yue, Y. Guo, W. Shen, R. Peng, H. Wu, X. Wang and M. Wang: J. Phys. Chem., Vol. 114 (2010), p.13846.

[13] X. Zhang, B. Yao, L. Zhao, C. Liang, L. Zhang and Y. Mao: J. Electrochem. Soc. Vol. 148 (2001), G398.

[14] S. Yamabi, H. Imai and K. Awazu: Chem. Lett. Vol. 2002 (2002), p.714.

[15] Y. Maio and S. S. Wong: J. Am. Chem. Soc. Vol. 126 (2004) p.15245.

[16] M. Nanko, K. Uemura and M. Takeda: ECS Trans. Vol. 3 (14) (2006), p.3.

[17] D. T. M. Do and M. Nanko: IOP Conf. Proc. Ser. Mater. Sci. Eng. (2010), accepted.

[18] D. T. M. Do, K. Uemura and M. Nanko: Mater. Sci. Forum, Vol. 620-622 (2009), p.521.

[19] N. Briks, G. H. Meier and F. S. Pettit: Introduction to the High-Temperature Oxidation of Metals, 2nd Edition, (Cambridge University Press, UK 2006) pp.104-108.

Fetching data from Crossref.
This may take some time to load.