High Temperature Oxidation of TiAl and TiAl8Nb Alloys in Air


Article Preview

Isothermal oxidation of two g-TiAl-based intermetallic alloys: Ti48Al and Ti46Al8Nb alloys was studied in synthetic air at 1073-1223 K for up to 240 hrs. Mass change per unit area for the oxidized samples followed approximately the parabolic rate law. The kp values for the studied temperature interval were in the range from 7.2×10-13 to 1.8×10-11 g2cm-4s-1. The activation energy for oxidation of Ti48Al alloy in air at 1073-1223 K was Ea = 165±12 kJ/mol. Niobium addition to Ti48Al alloy in the amount of 8% increased its oxidation resistance. Structure and chemical composition of the oxidation products, and morphology of the oxidized samples were investigated using XRD, SEM-EDS, and TEM. The oxide scales formed on Ti48Al and Ti46Al8Nb alloys were well adherent to the metallic substrates and exhibited a multilayer structure. Depending on the oxidation temperature and the alloy composition, the scale consisted of variable amounts of TiO2 and Al2O3. Additionally TiN, and niobium rich particles were also identified in the appropriate oxide scale. To understand the growth mechanism of oxide scale formed on Ti46Al8Nb alloy, two stage oxidation experiment was performed using 16O2/18O2, followed by SNMS and TEM-EDS. Particular attention was paid to the use of TEM in order to precisely characterize the reaction products on the Ti46Al8Nb alloy.



Edited by:

Toshio Maruyama, Masayuki Yoshiba, Kazuya Kurokawa, Yuuzou Kawahara and Nobuo Otsuka




J. Prazuchi et al., "High Temperature Oxidation of TiAl and TiAl8Nb Alloys in Air", Materials Science Forum, Vol. 696, pp. 389-394, 2011

Online since:

September 2011




[1] G. Sauthoff: Mater. Corr: Vol. 47 (1996) p.589.

[2] S. Taniguchi, in: Developments in high-temperature corrosion and protection of materials, edited by Wei Gao and Zhengwei Li, chapter, 11, Woodhead Publishing Litd, Cambridge, England (2008).

[3] E.A. Loria: Intermetallics Vol. 8 (2000) p.1339.

[4] E.A. Loria: Intermetallics Vol. 9 (2001) p.997.

[5] S. Becker, A. Rahmel, M. Schorr, and M. Schütze: Oxidation of Metals Vol. 38 (1992) p.425.

[6] Y. Shida, H. Anada: Corr. Sci. Vol. 35 (1993) p.945.

[7] S.A. Kekare, P.B. Aswath: J. Mater. Sci. Vol. 32 (1997) p.2485.

[8] R.G. Reddy, X. Wen, M. Divakar, Metallurgical and Materials Transactions A: Vol 32 A (2001) p.2357.

[9] Zhengwei Li and Wei Gao, in: Intermetallics. Research Progress, edited by Yakov N. Berdovsky, chapter 1, Nova Science Publish Inc (2008).

[10] A. Gil: Wysokotemperaturowa korozja stopów TiAl (Wydawnictwo Naukowe AKAPIT, Kraków, Poland, 2008).

[11] M. Yoshihara, K. Miura: Intermetallics Vol. 3 (1995) p.357.

[12] J.P. Lin, L.L. Zhao, G.Y. Li, L.Q. Zhang, X.P. Song, F. Ye, G.L. Chen: Intermetallics Vol. 19 (2011) P. 131.

[13] P.E. Tchoupe Ngnekou, M. -C. Lafont, F. Senocq, L. Laffont, B. Viguier, J. Lacaze: Intermetallics 18 (2010) p.226.

DOI: https://doi.org/10.1016/j.intermet.2009.07.013

[14] M. Mitoraj, E. Godlewska, O. Heintz, N. Geoffroy, S. Fontana, S. Chevalier: Intermetallics Vol. 19 (2011), p.39.

[15] E. Godlewska, M. Mitoraj, J. Morgiel, Materials at High Temperatures: Vol. 26 (2009) p.99.

[16] Wei Lu, ChunLin Chen, LianLong He, YanYun Xi, FuHui Wang: J. Mater. Res. Vol 22 (2007) p.1486.

DOI: https://doi.org/10.1557/jmr.2007.0188

[17] Wei Lu, Chunlin Chen, Yanjun Xi, Changyou Guo, Fuhui Wang, Lianlong He: Intermetallics Vol. 15 (2007) 824-831.

DOI: https://doi.org/10.1016/j.intermet.2006.10.014

[18] W. Lu, C.L. Chen, L.L. He, F.H. Wang, J.P. Lin, G.L. Chen: Corrosion Science Vol. 50 (2008) p.978.