High Resolution EBSD-Based Dislocation Microscopy


Article Preview

Significant advances are reported in the application of HR-EBSD to the imaging of the dislocation structure of polycrystalline materials. The central assumption of the method is the compatibility of the total displacement field, which relates the (Nye) dislocation tensor to the (partially measurable) curl of the elastic displacement field. Two key challenges must be addressed, including: a) the fundamental limitation imposed by the electron-opacity of typical materials, which limits the measurement of gradients in the displacement field in the direction normal to the sample surface; and b) the inability of HR-EBSD to recover the spherical (elastic) distortions of the lattice. This second challenge can be overcome if a traction free boundary condition is applied. It is illustrated that consideration of the familiar stress equilibrium relations gives additional information, which may enable estimates of the missing components of the Nye tensor. An example of application of HR-EBSD to a Mg-Ce sample is presented.



Materials Science Forum (Volumes 702-703)

Edited by:

Asim Tewari, Satyam Suwas, Dinesh Srivastava, Indradev Samajdar and Arunansu Haldar






B. L. Adams et al., "High Resolution EBSD-Based Dislocation Microscopy", Materials Science Forum, Vols. 702-703, pp. 11-17, 2012

Online since:

December 2011




In order to see related information, you need to Login.

In order to see related information, you need to Login.