Some Comments on Lattice Rotation in Aspect of Brass-Copper Texture Transition

Abstract:

Article Preview

The classical definition of lattice rotation leads in some cases to different textures than the definition based on the preservation of orientations of selected sample directions and/or planes. For example, if classical {111} slip is taken into account for f.c.c. materials, the former approach enables to predict both copper and brass types of rolling texture, while classical approach predicts only the first one. The analysis of rolling texture formation is done for two types of lattice rotation in function of grain-matrix interaction parameter used in a deformation model. Predicted textures and correlation factors estimating the similarity of predicted and experimental textures are presented.

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Edited by:

Asim Tewari, Satyam Suwas, Dinesh Srivastava, Indradev Samajdar and Arunansu Haldar

Pages:

212-215

DOI:

10.4028/www.scientific.net/MSF.702-703.212

Citation:

K. Wierzbanowski et al., "Some Comments on Lattice Rotation in Aspect of Brass-Copper Texture Transition", Materials Science Forum, Vols. 702-703, pp. 212-215, 2012

Online since:

December 2011

Export:

Price:

$35.00

[1] M. Berveiller, A. Zaoui, An Extension of the self-consistent scheme to plastically flowing polycrystals, J. Mech. Phys. Solids, 26 (1979) 325-344.

[2] W.F. Hosford, On Orientation Changes Accompanying Slip and Twinning, Texture of Crystalline Solids, 2 (1977) 175-182.

DOI: 10.1155/tsm.2.175

[3] T. Leffers and R.A. Lebensohn, Ambiguities in the calculation of lattice rotations for plane-strain deformation, Proc. of the 11th. Int. Conf. on Textures of Materials (ICOTOM-11), Z. Liang et al. eds., International Academic Publ., 1996, pp.307-314.

[4] R.A. Lebensohn and T. Leffers, The rules for the lattice rotation accompanying slip as derived from a self consistent model, Textures and Microstructures, 31 (1999) 217-230.

DOI: 10.1155/tsm.31.217

[5] K. Wierzbanowski, J. Jura, W.G. Haije, R.B. Helmholdt, FCC Rolling Texture Transitions in Relation to Constraint Relaxation, Cryst. Res. Technol., 27 (1992) 513- 522.

DOI: 10.1002/crat.2170270417

[6] K. Wierzbanowski, A. Baczmanski, P. Lipinski and A. Lodini, Elasto-plastic models of polycrystalline material deformation and their applications, Arch. Metall. Mater., 52 (2007) 77-86.

[7] A. Baczmanski, K. Wierzbanowski, C. Braham and A. Lodini, Internal Stresses in two Phase Polycrystalline Materials, Archives of Metallurgy, 44 (1999) 39- 50.

[8] S. Wroński, A. Baczmanski, R. Dakhlaoui, Ch. Braham, K. Wierzbanowski and E. Oliver, Determination of Stress Field in Textured Duplex Steel Using TOF Neutron Diffraction Method, Acta Materialia, 55 (2007) 6219-6233.

DOI: 10.1016/j.actamat.2007.07.044

[9] A. Baczmański, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, A. Lodini, Anisotropy of Micro-Stress - Measured by Diffraction, Revue de Metallurgie, 94 (1997) 1467- 1474.

DOI: 10.1051/metal/199794121467

[10] K. Wierzbanowski, Computer Simulation Study of Texture Transitions in F.C.C. Metals and Alloys, Proc. of the 5-th Intern. Conf. on Textures of Materials, Ed. by G. Gottstein and Lücke, vol. 1, Springer Verlag, Berlin, Germany, 1978, pp.309-317.

DOI: 10.1007/978-3-642-81313-9_28

[11] J. Tarasiuk and K. Wierzbanowski, Application of the Linear Regression Method for Comparison of Crystallographic Textures, Phil. Mag. A, 73 (1996) 1083- 1091.

DOI: 10.1080/01418619608243705

In order to see related information, you need to Login.