Strain Localizations in Ultra Low Carbon Steel

Abstract:

Article Preview

Ultra low carbon (ULC) steel samples were deformed in near plane-strain compression mode with different strains, strain rates and temperatures. Different aspects of microstructural developments, for deformed γ (ND//) and θ (ND//) fibre grains, were investigated using X-ray line profiles and high resolution electron diffraction. The study clearly showed increase in grain interior strain localizations and in-grain misorientation at the intermediate deformation temperature. This effect was more apparent in γ-fibre and can best be explained through orientation sensitive recovery. γ-fibre also demonstrated higher potential for increase in dislocation density. This was observed experimentally and simulated through discrete dislocation dynamic simulations. Higher textural softening with stronger increase in dislocation density and possible effects of orientation sensitive recovery appears to define the orientation dependent recovery in low carbon steels.

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Edited by:

Asim Tewari, Satyam Suwas, Dinesh Srivastava, Indradev Samajdar and Arunansu Haldar

Pages:

782-785

DOI:

10.4028/www.scientific.net/MSF.702-703.782

Citation:

R. Khatirkar et al., "Strain Localizations in Ultra Low Carbon Steel", Materials Science Forum, Vols. 702-703, pp. 782-785, 2012

Online since:

December 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.