Crystallographic Features of the C-Type Orbital-Ordered, and Charge- and Orbital-Ordered States in the Simple Perovskite Manganite Ca1-xLaxMnO3


Article Preview

The C-type orbital-ordered (CTOO), and charge-and orbital-ordered (COO) states are present in the simple perovskite manganite Ca1-xLaxMnO3, which has a three-dimensional highly-correlated electronic system. In this study, the crystallographic features of the CTOO and COO states have been investigated mainly by transmission electron microscopy to understand responses of a lattice system to these orderings. Of these two states, the cooling from the disordered orthorhombic Pnma (DO) state around x = 0.20 resulted in the CTOO state with the monoclinic P21/m symmetry. As a result of the monoclinic distortion as a response of the lattice system, the CTOO state consisted of a banded structure that was characterized by an alternating array of two monoclinic domains with different β values. In 0.30 < x < 0.50, on the other hand, the appearance of the COO state from the DO state on cooling accompanied a transverse lattice modulation with q = []DO as a response to orbital ordering in the COO state. The subsequent cooling in the COO state led to the antiferromagnetic ordering with a large lattice dilatation. In other words, no change in the crystal symmetry occurs in the appearance of the antiferromagnetic ordering.



Materials Science Forum (Volumes 706-709)

Main Theme:

Edited by:

T. Chandra, M. Ionescu and D. Mantovani






Y. Inoue et al., "Crystallographic Features of the C-Type Orbital-Ordered, and Charge- and Orbital-Ordered States in the Simple Perovskite Manganite Ca1-xLaxMnO3", Materials Science Forum, Vols. 706-709, pp. 1612-1617, 2012

Online since:

January 2012




[1] E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

[2] J. B. Goodenough, Phys. Rev. 100, 564 (1955).

[3] Colossal Magneto resistance, Charge Ordering and Related Properties of Manganese Oxides, edited by C. N. Rao and B. Raveau (World Scientific, Singapore, 1998).

DOI: 10.1142/3605

[4] M. Pissas and G. Kallias, Phys. Rev. B 68, 134414 (2003).

[5] C. D. Ling, E. Granado, J. J. Neumeier, J. W. Lynn, and D. N. Argyriou, Phys. Rev. B 68, 134439 (2003).

[6] J. Tao, D. Niebieskikwiat, M. B. Salamon, and J. M. Zuo, Phys. Rev. Lett. 94, 147206 (2005).

[7] D. Niebieskikwiat, J. Tao, J. M. Zuo, and M. B. Salamon, Phys. Rev. B 78, 014434 (2008).

[8] Y. Moritomo, Y. Tomioka, A. Asamitsu, Y. Tokura, and Y. Matsui, Phys. Rev. B 51, 3297 (1995).

[9] S. Larochelle, A. Mehta, N. Kaneko, P. K. Mang, A. F. Panchula, L. Zhou. J. Arthur, and M. Greven, Phys. Rev. Lett. 87, 095502 (2001).

DOI: 10.1103/physrevlett.87.095502

[10] S. Larochelle, A. Mehta, L. Lu, P. K. Mang, O. P. Vajk, N. Kaneko, J. W. Lynn, L. Zhou, and M. Greven, Phys. Rev. B 71, 024435 (2005).

[11] D. Senff, O. Schumann, M. Benomar, M. Kriener, T. Lorenz, Y. Sidis, K. Habicht, P. Link, and M. Braden, Phys. Rev. B 77, 184413 (2008).

DOI: 10.1103/physrevb.77.184413

[12] W. Norimatsu and Y. Koyama, Phys. Rev. B 74, 085113 (2006).

[13] W. Norimatsu and Y. Koyama, Phys. Rev. B 75, 104416 (2007).

[14] Y. Inoue, M. Arao, G. Shindo, and Y. Koyama, Materials Science Forum 638-642, 1760 (2010).

In order to see related information, you need to Login.