Microstructure Evolution during the Accumulative Roll Bonding Process in Armco Iron


Article Preview

The Armco iron is one of the purest commercial iron with very low levels of carbon, oxygen and nitrogen. In order to improve the mechanical properties, it is worth applying severe plastic deformation to obtain ultrafine-grained bulk materials, with grain size lower than 1 μm. In this study, samples of Armco iron were subjected to a technique of severe plastic deformation named Accumulative Roll Bonding (ARB). This method consists in rolling to 50% two sheets pack of which the stacked surfaces were initially cleaned. Then, the rolled strip is sectioned in two halves, cleaned and stacked again and the procedure of roll-bonding repeated. Practically, the process can be repeated without limits. The important parameter of ARB is the number of cycles and then the consequent number of layers of the final sample. By means of the Electron Backscattered Diffraction (EBSD) technique, the evolution of both microstructure and texture as regard to the number of ARB cycles was studied. The analysis of mean grains size and high angle grain boundaries (HAGB) fraction as a function of the number of cycles showed an early formation of a subgrained structure with low angle boundaries and then the evolution of the microstructure towards an ultrafine-grained structure with an increase of HAGB.



Materials Science Forum (Volumes 706-709)

Main Theme:

Edited by:

T. Chandra, M. Ionescu and D. Mantovani




E. Bonnot et al., "Microstructure Evolution during the Accumulative Roll Bonding Process in Armco Iron", Materials Science Forum, Vols. 706-709, pp. 1757-1762, 2012

Online since:

January 2012




[1] R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev: Mater. Sci. Eng. A137 (1991) 35-40.

[2] A. L. Etter, T. Baudin, C. Rey and R. Penelle: Mater. Characterization, 56 (2006) 19-25.

[3] Z. Guo, D. Solas, A. L. Etter, T. Baudin and R. Penelle: Mater. Sci. Forum 426-432 (2003) 2723-2728.

DOI: https://doi.org/10.4028/www.scientific.net/msf.426-432.2723

[4] R. Z. Valiev, Yu. V. Ivanisenko, E. F. Rauch and B. Baudelet: Acta Mater. 44 (1996) 4705-4712.

[5] A. Loucif, R. B. Figueiredo, T. Baudin, F. Brisset and T. G. Langdon: Mater. Sci. Eng. A527 (2010) 4864-4869.

[6] A. Loucif, R. B. Figueiredo, T. Baudin, F. Brisset and T. G. Langdon: Mater. Sci. Forum 667-669 (2011) 223-228.

[7] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. 47 (1999) 579-583.

[8] G. Krallics and J.G. Lenard: Jour. Mater. Process. Technol. 152 (2004) 154-161.

[9] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong: Scripta Mater. 39 (1998) 1221-1227.

[10] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa: Scripta Mater. 40 (1999) 795-800.

[11] H. Pirgazi, A. Akbarzadeh, R. Petrov, J. Sidor and L. Kestens: Mat. Sci. Eng. A492 (2008) 110-117.

[12] J. Scharnweber, W. Skrotzki, C-G. Oertel, H-G. Brokmeier, H. W. Höppel, I. Topic and J. Jaschinski: Adv. Eng. Mater. 12 (2010) 989-994.

DOI: https://doi.org/10.1002/adem.201000067

[13] J. Kuśnierz, M-H. Mathon, J. Bogucka, M. Faryna, Z. Jasieński, R. Penelle and T. Baudin: Archives of Metall. Mater. 51 (2006) 237-243.

[14] J. Kuśnierz, J. Bogucka, M.H. Mathon and T. Baudin: Archives of Metall. Mater. 53 (2008) 1-5.

[15] F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena (2nd ed., Elsevier Ltd, Oxford, 2004).

[16] P. Gobernado, R. Petrov, D. Ruiz, E. Leunis and L. A. I. Kestens: Adv. Eng. Mater. 12 (2010) 1077-1081.

DOI: https://doi.org/10.1002/adem.201000075

[17] N. Tsuji, Y. Saito, H. Utsunomiya and T. Sakai: Proceedings of Recrystallization and Related Phenomena, 13 (1999) 309-314.

[18] S. Tamimi, M. Ketabchi and N. Parvin: Materials and Design 30 (2009) 2556-2562.