Progress in Understanding the Fatigue Behavior of Ti Alloys


Article Preview

Titanium (Ti) alloys are used in critical, fatigue limited applications in aircraft and aircraft engines. Current design practices are, of necessity, conservative in order to minimize risk of unexpected failures. Among the sources of this conservatism are the inherent variations in the number of loading cycles the materials can withstand prior to fatigue crack initiation, the uncertainty in crack propagation lifetime prediction and the need to set safe minimum component life values. While the stochastic nature of fatigue is well-known, improved characterization methods have begun to provide a better understanding of the crack initiation process. This paper describes recent work designed to provide an improved understanding of the relationship between thermomechanical processing history, microstructure, texture and the fatigue behavior of α+β Ti alloys. Due to length limitations, the paper focuses on two important aspects of fatigue life variation: the effects of microstructural discontinuities on fatigue and the role of facet formation during crack initiation and the early stages of fatigue crack growth.



Edited by:

Dr. S.V.S. Narayana Murty




A. L. Pilchak et al., "Progress in Understanding the Fatigue Behavior of Ti Alloys", Materials Science Forum, Vol. 710, pp. 85-92, 2012

Online since:

January 2012




[1] G. Lütjering and J. C. Williams, Titanium, second ed., Springer-Verlag, Berlin, (2007).

[2] A.L. Pilchak, J.C. Williams, Metall. Mater. Trans. A 42A (2011) 773-794.

[3] W.J. Evans, C.R. Gostelow, Metall. Mater. Trans. A 10A (1979) 1837-46.

[4] D.F. Neal, Proc. 6th Int. Conf. on Ti, Cannes, P. Lacombe (Ed. ), Paris, 1988, pp.175-83.

[5] V. Sinha, M.J. Mills, and J.C. Williams, in: K. Jata, E.W. Lee, W. Frazier, N.J. Kim (Eds. ), Lightweight Alloys for Aerospace Applications, TMS, Warrendale PA, 2001, pp.194-207.

[6] A.L. Pilchak, A.R. Shiveley, J.S. Tiley, D.L. Ballard, Jl. of Microscopy 244 (2011) 38-44.

[7] A.R. Shiveley, P.A. Shade, A.L. Pilchak, J.S. Tiley, R. Kerns, Jl. of Microscopy, doi: 10. 1111/j. 1365-2818. 2011. 03524. x.

[8] A. Bhattacharjee, A.L. Pilchak, O. Lobkis, J.W. Foltz, S.I. Rokhlin, J.C. Williams, Metall. Mater. Trans. A. 42A (2011) 2358-72; also DOI: 10. 1007/s11661-011-0619-x.

[9] A.W. Bowen: Influence of Crystallographic Orientation on Fatigue Crack Growth in Strongly Textured Ti-6Al-4, Acta Met., 23 (1975) 1401-09.


[10] I. Bantounas, T.C. Lindley, D. Rugg, D. Dye, Acta Mater. 55 (2007) 5655-65.

[11] I. Bantounas, D. Dye, T.C. Lindley, Acta Mater. 57 (2009) 3584-95.

[12] C.M. Ward-Close, C.J. Beevers, Metall. Mater. Trans. A 11A (1980) 1007-17.

[13] V. Sinha, M.J. Mills J.C. Williams, Metall. Mater. Trans. A 37A (2006) 2015-26.

[14] A.L. Pilchak, J.C. Williams, in: T.S. Srivatsan, M.A. Imam (Eds. ), Fatigue of Materials: Advances and Emergences in Understanding, TMS, Warrendale PA, 2010, pp.327-338.

[15] A.L. Pilchak, R.E.A. Williams, J.C. Williams, Metall. Mater. Trans. A 41 (2010) 106-24.

[16] E. Uta, N. Gey, P. Bocher, M. Humbert, J. Gilgert, Jl. of Microscopy 233, Pt. 3 (2009) 451-59.

[17] M.R. Bache, W.J. Evans, H.M. Davies, Jl. of Materials Science 32 (1997) 3435-42.

[18] A.L. Pilchak, A. Bhattacharjee, A.H. Rosenberger, J.C. Williams, The Internat. Jl. of Fatigue, 31 (2009) 989-94.

[19] A.L. Pilchak, K. Nakase, I. Inagaki, Y. Shirai, A.H. Rosenberger, J.C. Williams, in Proc. of Ti-2011 – Beijing, L. Zhoy (Ed. ) (in press).

[20] Adam Pilchak, Mary Juhas, Jim Williams, Metall. Mater. Trans. A 38A (2007)401-08.

[21] A. L. Pilchak, J. C. Williams, Metall. Mater. Trans. A, 42A, (2011). 1630-45.

[22] J. C. Chesnutt, A. W. Thompson, and J. C. Williams, in: Titanium '80, Science and Technology, H. Kimura and O. Izumi, (Eds. ), TMS-AIME, Warrendale, PA, 1981, Vol. 2, pp.1571-1579.

[23] J. M. Larsen, T. Nicholas, A. W. Thompson, J. C. Williams, in: Fatigue Threshholds, R. O. Ritchie and J. Lankford, (Eds. ), TMS, Warrendale, PA, 1986, pp.499-512.

[24] J. E. Allison, J. C. Williams, in: Titanium, Science and Technology Vol. 4, (G. Lütjering, U. Zwicker, W. Bunk, (Eds. ), Deutsche Gesellschaft für Metallkunde e. V., Munich, 1985, pp.2243-52.

[25] A. L. Pilchak, J. C. Williams, Metall. Mater. Trans. A 42A (2011) 1630-45.

[26] D.S. Shih, I.M. Robertson, H.K. Birnbaum, Acta. Metall. 36 (1988), pp.111-24.