In Situ Observation of Recovery and Grain Growth in High Purity Aluminum


Article Preview

We have used high energy x-ray diffraction microscopy (HEDM) to study annealing behavior in high purity aluminum. In-situ measurements were carried out at Sector 1 of the Advanced Photon Source. The microstructure in a small sub-volume of a 1 mm diameter wire was mapped in the as-received state and after two differential anneals. Forward modeling analysis reveals three dimensional grain structures and internal orientation distributions inside grains. The analysis demonstrates increased ordering with annealing as well as persistent low angle internal boundaries. Grains that grow from disordered regions are resolution limited single crystals. Together with this recovery behavior, we observe subtle motions of some grain boundaries due to annealing.



Materials Science Forum (Volumes 715-716)

Edited by:

E.J. Palmiere and B.P. Wynne




C. M. Hefferan et al., "In Situ Observation of Recovery and Grain Growth in High Purity Aluminum", Materials Science Forum, Vols. 715-716, pp. 447-454, 2012

Online since:

April 2012




[1] C. Herring, Surface tension as a motivation for sintering, The Physics of Powder Metallurgy, W. E. Kingston. New York, McGraw-Hill Book Co., pp.143-179 (1951).

[2] W.W. Mullins, The statistical self-similarity hypothesis in grain growth and particle coarsening, Journal of Applied Physics, 59: 1341 (1986).


[3] M. Hillert, On the theory of normal and abnormal grain growth., Acta Metallurgica, 13, 227 (1965).

[4] D.M. Saylor, A. Morawiec and G. S. Rohrer, The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters, Acta materialia, 51: 3675-3686 (2003).


[5] J. Gruber, D.C. George, A.P. Kuprat, G.S. Rohrer, A.D. Rollett, Effect of Anisotropic Grain Boundary Properties on Grain Boundary Plane Distributions During Grain Growth, Scripta Materialia, 53: 351-355 (2005).


[6] G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals, Boca Raton, FL, CRC Press (1999).

[7] M.C. Demirel, A. P. Kuprat, D. C. George, G. K. Straub and A. D. Rollett, Linking experimental characterization and computational modeling of grain growth in Al-foil, Interface Science 10: 137-141 (2002).


[8] A.D. Rollett, Crystallographic Texture Change During Grain Growth, Journal of The Minerals, Metals and Materials Society, 56: 63-68 (2004).

[9] D.L. Olmsted, E.A. Holm and S.M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility, Acta materialia, 57: 3704-3713 (2009).


[10] H.F. Poulsen, Three-Dimensional X-ray Diffraction Microscopy, Springer Tracts in Modern Physics, Vol 205, G. Hohler, ed., 2004, Springer, Berlin.


[11] H.F. Poulsen, S.F. Nielsen, E.M. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies, T. Lorentzen, and D. Juul Jensen, Three-dimensional maps of grain boundaries and the stress-state of individual grains, J. Appl. Cryst., 34: 751—756 (2001).


[12] E.M. Lauridsen, S. Schmidt, R.M. Suter, and H.F. Poulsen. Tracking: a method for structural characterization of grains in powders or polycrystals, J. Appl. Cryst., 34: 744-750, (2001).


[13] R.M. Suter, D. Hennessy, C. Xiao, U. Lienert, Forward Modeling Method for Microstructure Reconstruction Using X-ray Diffraction Microscopy: Single Crystal Verification, Rev. Sci. Instr., 77, 123905 1-12 (2006).


[14] R.M. Suter, C.M. Hefferan, S.F. Li, D. Hennessy, C. Xiao, U. Lienert, B. Tieman, Probing Microstructure Dynamics With X-ray Diffraction Microscopy, ', J. Eng. Mater. Technol., 130, 021007 1-5 (2008).


[15] G. Johnson, A. King, M. Goncalves Honnicke, J. Marrow and W. Ludwig, X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case, J. Appl. Cryst., 41, 310-318 (2008).


[16] W. Ludwig, P. Reischig, A. King, M. Herbig, E. M. Lauridsen, G. Johnson, T. J. Marrow, and J. Y. Buffi\{e}re, "Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis, Rev. Sci. Instr. 80, 033905 (2009).


[17] B.C. Larson, W. Yang, J.D. Budai, J.Z. Tischler, J.W.L. Pang, R.I. Barabash, W. Liu, and G.E. Ice, Polychromatic X-ray microdiffraction studies of mesoscale structure and dynamics, J. Synchr. Rad., 12, 155-162 (2005).


[18] B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, J.Z. Tischler, Three-dimensional X-ray structural microscopy with submicrometre resolution, Nature, 415, 887-890 (2002).


[19] C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, Tests of Microstructure Reconstruction by Forward Modeling of HEDM Data, Advances in X-ray Analysis, 53, Proceedings of the 2009 Denver X-ray Conference, to be published.

[20] C.M. Hefferan, S.F. Li, J. Lind, U. Lienert, A.D. Rollett, R.M. Suter, Differential annealing of defected grains in high purity aluminum, Journal of Powder Diffraction, 25, 132-137 (2010).

[21] S.F. Li, C.M. Hefferan, U. Lienert, A.D. Rollett, R.M. Suter, in preparation.

[22] U. Lienert, J. Almer, B. Jakobsen, W. Pantleon, H.F. Poulsen, D. Hennessy, C. Xiao, and R.M. Suter, 3-Dimensional Characterization of Polycrystalline Bulk Materials Using High-Energy Synchrotron Radiation, Mat. Sci. Forum, 539-543, 2353-2358 (2007).


[23] T. Martin, P. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupr\{e}, and A. Rack, "LSO-Based Single Crystal Film Scintillator for Synchrotron-Based Hard X-Ray Micro-Imaging, IEEE Trans. Nuc. Sci., 56, 1412-1418 (2009).


[24] A. Yershova, S. Jain, S.M. LaValle, and J.C. Mitchell, Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration, Int. J. Robotics Research, 2009, accepted.


[25] K.M. G{\o}rski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelmann, "HEALPIX - a Framework for High Resolution Discretization, and Fast Analysis of Data Distributed on the Sphere, Astrophys. J., 622, 759 (2005).


Fetching data from Crossref.
This may take some time to load.