Packaging Technologies for 500°C SiC Electronics and Sensors


Article Preview

This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500°C silicon carbide (SiC) electronics and sensors, and test results of packaged SiC JFETs and capacitive pressure sensors at 500°C.



Materials Science Forum (Volumes 717-720)

Edited by:

Robert P. Devaty, Michael Dudley, T. Paul Chow and Philip G. Neudeck




L. Y. Chen et al., "Packaging Technologies for 500°C SiC Electronics and Sensors", Materials Science Forum, Vols. 717-720, pp. 1033-1036, 2012

Online since:

May 2012




[1] L. -Y. Chen and G.W. Hunter, Temperature Dependent Dielectric Properties of Polycrystalline 96%Al2O3 Substrate, Proc. Symposium G, MRS Fall Meeting, Boston, MA, 2004. b.

[2] J.S. Salmon, R.W. Johnson, and M. Palmer, Thick Film Hybrid Packaging Techniques for 500°C Operation, in Trans. Fourth Int. Conf. HiTEC, Albuquerque, NM, (1998).


[3] L. -Y Chen. and J. -F. Lei, Packaging of Harsh – Environment MEMS Devices (Chapter 12), in: M. Gad-el-Hak (Eds), MEMS Design and Fabrication, The MEMS Handbook (2nd Edition), CRC Press, Boca Raton, LA, 2006. Figure 5: The parasitic capacitance (a) and parallel conductance (b) of the sensor package with Lava sealant.

[9] The package was characterized at 1 atm.

[4] L. -Y. Chen and G.W. Hunter, Al2O3 and AlN Ceramic Chip-level Packages for 500°C Operation, in Proceedings of High Temperature Electronics Network (HiTEN), Paris, France, (2005).

[5] P. Hagler, R.W. Johnson, and L. -Y. Chen, SiC Die Attach Metallurgy and Processes for Applications up to 500°C, IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol. 1, Issue: 4 (2011) 630 - 639.


[6] L. -Y. Chen, D.J. Spry, and P.G. Neudeck, Demonstration of 500°C AC Amplifier Based on SiC MESFET and Ceramic Packaging, in Proc. Int. Conf. HiTEC, Santa Fe, NM (2006) 240.

[7] P.G. Neudeck et al, Extreme Temperature 6H-SiC JFET Integrated Circuit Technology, Phys. Status Solidi A 206, No. 10, (2009).

[9] .

[8] L. -Y. Chen, Improvement of Dielectric Performance of a Prototype AlN High Temperature Chip - level Package, in Proc. HiTEN, Oxford, England, (2011).

[9] L. -Y. Chen, G.M. Beheim, and R.D. Meredith, Packaging Technology for High Temperature Capacitive Pressure Sensors, in Proc. Int. Conf. HiTEC, Santa Fe, NM, (2006).

[10] J.C. Xu, G.W. Hunter et al, Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging, in Proc. ICSCRM, Cleveland, Ohio, (2011).