Density Functional Simulations of Transition Metal Terminated (001)-Diamond Surfaces


Article Preview

The chemical termination of diamond strongly impacts its electron affinity and thermal stability. We have performed density functional calculations examining up to a monolayer of selected transition metals (Ti, V, Ni and Cu) on the 2×1 reconstructed (001) surface. We find that addition of the carbide forming species, Ti and V, results in significantly higher binding adsorption energies at all surface coverages relative to those of the non-carbide-forming species. For monolayer coverage by Cu or Ni, and sub-monolayer coverage by Ti and V, we observe a negative electron affinity. We propose that based upon the electron affinities and binding energies, metal coated 2×1 reconstructed (001) diamond surfaces are promising candidates for electron emitters.



Materials Science Forum (Volumes 717-720)

Edited by:

Robert P. Devaty, Michael Dudley, T. Paul Chow and Philip G. Neudeck




A. K. Tiwari et al., "Density Functional Simulations of Transition Metal Terminated (001)-Diamond Surfaces", Materials Science Forum, Vols. 717-720, pp. 1311-1314, 2012

Online since:

May 2012




[1] F. Maier, J. Ristein and L. Ley, Phys. Rev. B 64 (2001) 165411.

[2] G. Despesse and T. Jager, J. Appl. Phys. 96 (2004) 5026-5031.

[3] P.K. Baumann and R.J. Nemanich, Diamond and Rel. Mat. 7 (1998) 612-619.

[4] J. van der Weide and R.J. Nemanich, J. Vac. Sci. Technol. B 10 (1992) 1940-(1943).

[5] J.P. Perdew and Y. Wang, Phys. Rev. B 45 (1992) 13244.

[6] R. Jones and P. R. Briddon, in Identification of Defects in Semiconductors, Vol. 51A of Semiconductors and Semimetals, edited by M. Stavola (Academic Press, Boston, 1998), Chap. 6; M.J. Rayson and P.R. Briddon Comp. Phys. Comm. 178 (2008).

[7] C. Hartwigsen, S. Goedecker and J. Hutter, Phys. Rev. B 58 (1998) 3641.

[8] J.P. Goss, M.J. Shaw and P.R. Briddon in Theory of Defects in Semiconductors, Vol 104 of Topics in Applied Physics ed. D.A. Drabold and S.K. Estreicher (Springer, Berlin) 2007 pp.69-94.

[9] H.J. Monkhorst and J.D. Pack, Phys. Rev. B, 13 (1976) 5188.

[10] J.B. Cui, et al, Phys. Rev. Lett. 81 (1998) 430.

[11] S.J. Sque, R. Jones and P.R. Briddon, Phys. Stat. Sol. (a) 202 (2005) 2091–2097. 0. 25 ML of Ti (H).