Luminescence Imaging of Extended Defects in SiC via Hyperspectral Imaging


Article Preview

Over the past decade, improvements in silicon carbide growth and materials has led to the development of commercialized unipolar devices such as Schottky diodes and MOSFETs, however, much work remains to realizing the goal of wide-scale commercialization of both unipolar and bipolar devices such as pin diodes or IGBTs, for high applications requiring high powers, operating in elevated temperatures or radiation environments or for many fast switching applications. Despite the great strides that have been made in reducing extended and point defect densities during this period, such defects still remain and with the push to lower off-cut angle substrates are in many cases seeing increases in prevalence. Thus, spectroscopic and imaging techniques for locating and identifying these defects are in high demand. Luminescence imaging and spectroscopy have both been utilized heavily in such work, yet simultaneously obtaining corresponding spectroscopic and spatial information from such defects is problematic. Here we report on hyperspectral imaging of electroluminescence from SiC pin diodes, whereby a stack of luminescence images are collected over a wide spectral range (400-900 nm), thereby providing the ability to both image distinct features and identify their corresponding spectral properties. This process is also equally applicable to collecting either photo- or electroluminescence from other materials or devices emitting in either the UV-Vis or NIR spectral range, as well as to reflectance, transmission or other imaging techniques.



Materials Science Forum (Volumes 717-720)

Edited by:

Robert P. Devaty, Michael Dudley, T. Paul Chow and Philip G. Neudeck




J. D. Caldwell et al., "Luminescence Imaging of Extended Defects in SiC via Hyperspectral Imaging", Materials Science Forum, Vols. 717-720, pp. 403-406, 2012

Online since:

May 2012




[1] J. D. Caldwell, R. E. Stahlbush, O. J. Glembocki, M. G. Ancona and K. D. Hobart, J. Appl. Phys. 108 (2010) 044503.

[2] R. E. Stahlbush, B. L. VanMil, R. L. Myers-Ward, K. K. Lew, D. K. Gaskill and C. R. Eddy, Appl. Phys. Lett. 94 (2009) 041916.

[3] R. E. Stahlbush, K. X. Liu, Q. Zhang and J. J. Sumakeris, Mater. Sci. Forum 556-557 (2007) 295-298.

[4] A. J. Giles, J. D. Caldwell, R. E. Stahlbush, B. A. Hull, N. A. Mahadik, O. Glembocki, K. D. Hobart and K. X. Liu, J. Electron. Mater. 39 (2010) 777-780.

[5] J. D. Caldwell, A. J. Giles, R. E. Stahlbush, M. G. Ancona, O. J. Glembocki, K. D. Hobart, B. A. Hull and K. X. Liu, Mater. Sci. Forum 645-648 (2010) 277-282.


[6] A. Galeckas, J. Linnros and P. Pirouz, Phys. Rev. Lett. 96 (2006) 025502.

[7] K. -B. Park, Y. Ding, J. P. Pelz, J. Grim, M. Skowronski, M. K. Mikhov, Y. Wang and B. J. Skromme, Mater. Sci. Forum in press (2006).

[8] M. Skowronski and S. Ha, J. Appl. Phys. 99 (2006) 011101.

[9] R. S. Okojie, M. Xhang, P. Pirouz, S. Tumakha, G. Jessen and L. J. Brillson, Appl. Phys. Lett. 79 (2001) 3056-3058.


[10] H. Iwata, U. Lindefelt, S. Oberg and P. R. Briddon, J. Appl. Phys. 93 (2003) 1577.

[11] H. Iwata, U. Lindefelt, S. Oberg and P. R. Briddon, J. Appl. Phys. 94 (2003) 4972.

[12] K. X. Liu, R. E. Stahlbush, S. I. Maximenko and J. D. Caldwell, Appl. Phys. Lett. 90 (2007) 153503.

[13] M. Ikeda, H. Matsunami and T. Tanaka, Phys. Rev. B 22 (1980) 2842-2854.

[14] S. I. Maximenko, J. A. Freitas, P. B. Klein, A. Shrivastava and T. S. Sudarshan, Appl. Phys. Lett. 94 (2009) 092101.

[15] H. Fujiwara, T. Kimoto, T. Tojo and H. Matsunami, Appl. Phys. Lett. 87 (2005) 051912.

[16] J. D. Caldwell, R. E. Stahlbush, O. J. Glembocki, K. X. Liu, K. D. Hobart and F. Kub, J. Vac. Sci. Technol. B 24 (2006) 2178.

[17] J. D. Caldwell, P. B. Klein, M. E. Twigg, R. E. Stahlbush, O. J. Glembocki, K. X. Liu, K. D. Hobart and F. Kub, Appl. Phys. Lett. 89 (2006) 103519.