Spatially Graded Graphitization on 4H-SiC (0001) with Si-Sublimation Gradient for High Quality Epitaxial Graphene Growth


Article Preview

We report a new approach to produce high quality epitaxial graphene based on the concept of controlling Si sublimation rate from SiC surface. By putting a mask substrate to suppress Si sublimation from the SiC surface in ultrahigh vacuum, epitaxial graphene growth at 4H-SiC (0001) was locally controlled. Spatially graded surface graphitization was confirmed in a scanning electron microscopy contrast from the outside unmasked region to the inside masked region. The contrast was discussed with Raman characterization as the increase of graphene thickness and the surface compositional change of SiC. Results indicate two types of growth processes of epitaxial graphene at 4H-SiC (0001) step-terrace structures.



Materials Science Forum (Volumes 717-720)

Edited by:

Robert P. Devaty, Michael Dudley, T. Paul Chow and Philip G. Neudeck




S. Ushio et al., "Spatially Graded Graphitization on 4H-SiC (0001) with Si-Sublimation Gradient for High Quality Epitaxial Graphene Growth", Materials Science Forum, Vols. 717-720, pp. 601-604, 2012

Online since:

May 2012




[1] W. Lu, J.J. Boeckl, W.C. Mitchel, Appl. Phys. 43 (2010) 374004.

[2] R.M. Tromp and J.B. Hannon, Phys. Rev. Lett. 102 (2009) 106104.

[3] J.L. Tedesco, B. VanMil, R.L. Myers-Ward, J. Culbertson, G. Jernigan, P. Campbell, J.M. McCrate, S.A. Kitt, C. E ddy, Jr.,D.K. Gaskill: ECS Trans. 19.


[5] (2009) 137.

[4] C. Virojanadara, M. Syväjarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian, Phys. Rev. B 78 (2008) 245403.

[5] W.A. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, E.H. Conrad, PNAS Early Eddition (2011) 16899.

[6] X.Z. Yu, C.G. Hwang, C.M. Jozwiak, A. Köhl, A.K. Schmid, A. Lanzara, J. Electron Spectrosc. Relat. Phenom. 184 (2011) 100.

[7] S. Ushio, A. Adachi, K. Matsuda, N. Ohtani, T. Kaneko, Mater. Sci. Forum, 679-680 (2011) 777.

[8] N. Camara, J-R. Huntzinger, G. Rius, A. Tiberj, N. Mestres, F. Pérez-Murano, P. Godignon, J. Camassel, Phys. Rev. B 80 (2009) 125410.


[9] H. Hiura, H. Miyazaki, K. Tsukagoshi, Appl. Phys. Express 3 (2010) 095101.

[10] D.K. Gaskill, J.K. Hite, J.C. Culbertson, G.G. Jernigan, J.L. Tedesco, L.O. Nyakiti, V.D. Wheeler, R.L. Myers-Ward, N.Y. Garces, C.R. Eddy, Jr., Mater. Sci. Forum, 679-680 (2011) 789.


[11] D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, J.H. Smet, Nano Lett. 8 (2008) 4320.

[12] M.L. Bolen, S.E. Harrison, L.B. Biedermann, M.A. Capano, Phys. Rev. B 80 (2009) 115433.

[13] T. Ohta, N.C. Bartelt, S. Nie, K. Thrümer, G.L. Kellogg, Phys. Rev. B 81 (2010) 121411(R).

[14] J. Hass, W.A. de Heer, E.H. Conrad, J. Phys: Condens. Matter. 20 (2008) 323202.