Plasma-Based Chemical Modification of Epitaxial Graphene

Abstract:

Article Preview

In this work, the treatment of epitaxial graphene on SiC using electron beam generated plasmas produced in mixtures of argon and oxygen is demonstrated. The treatment imparts oxygen functional groups on the surface with concentrations ranging up to about 12 at.%, depending on treatment parameters. Surface characterization of the functionalized graphene shows incorporation of oxygen to the lattice by disruption of ∏-bonds, and an altering of bulk electrical properties.

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Edited by:

Robert P. Devaty, Michael Dudley, T. Paul Chow and Philip G. Neudeck

Pages:

657-660

DOI:

10.4028/www.scientific.net/MSF.717-720.657

Citation:

S. G. Walton et al., "Plasma-Based Chemical Modification of Epitaxial Graphene", Materials Science Forum, Vols. 717-720, pp. 657-660, 2012

Online since:

May 2012

Export:

Price:

$35.00

[1] A. K. Geim, Graphene: Status and Prospects Science 324 (2009) 1530-1534.

[2] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science 312 (2006) 1191-1196.

DOI: 10.1126/science.1125925

[3] J. K. Hite, M. E. Twigg, J. L. Tedesco, A. L. Friedman, R. L. Myers-Ward, C. R. Eddy, Jr., and D. K. Gaskill, Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions, Nano Lett. 11 (2010) 1190-1194.

DOI: 10.1021/nl104072y

[4] D. A. Abanin, A. V. Shytov, and L. S. Levitov, Peierls-type instability and tunable band gap in functionalized graphene, Phys. Rev. Lett. 105 (2010) 086802-4.

DOI: 10.1103/physrevlett.105.086802

[5] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the Electronic Structure of Bilayer Graphene, Science 313 (2006) 951-954.

[6] D. K. Samarakoon and X. -Q. Wang, Tunable band gap in hydrogenated bilayer graphene, Acs Nano 4 (2010) 4126-4130.

DOI: 10.1021/nn1007868

[7] M. Wu, C. Cao, and J. Z. Jiang, Light non-metallic atom (B, N, O and F) -doped graphene: a firstprinciples study, Nanotechnol. 21 (2010) 505202-6.

[8] J.R. Hahn, H. Kang, S. Song, and I.C. Jeon, Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study, Phys. Rev. B 53 (1996) R1725-R1728.

DOI: 10.1103/physrevb.53.r1725

[9] D. Marton, K.J. Boyd, T. Lytle and J.W. Rabalais, Near Threshold Ion Induced Defect Production in Graphite, Phys. Rev. B 48 (1993) 6757-6766.

DOI: 10.1103/physrevb.48.6757

[10] S.G. Walton, C. Muratore, D. Leonhardt, R.F. Fernsler, D.D. Blackwell, and R.A. Meger, Electron beam-generated plasmas for materials processing, Surf. Coat. Technol., 186 (1-2) (2004) 40-46.

DOI: 10.1016/j.surfcoat.2004.04.007

[11] M. Baraket, S.G. Walton, E.H. Lock, J.T. Robinson, F.K. Perkins, Electron beam generated plasmas for the functionalization of graphene, Appl. Phys. Lett. 96 (2010) 231501-3.

DOI: 10.1063/1.3436556

[12] S.G. Walton, D. Leonhardt, and R.F. Fernsler, Time-resolved Diagnostics in a Pulsed, Electron BeamGenerated Plasma, IEEE Trans. Plasma Science, 33 (2005) 838-843.

DOI: 10.1109/tps.2005.845239

[13] S.G. Walton, βˆ— E.H. Lock, A. Ni , M. Baraket, R.F. Fernsler, D.D. Pappas, K.E. Strawhecker, and A.A. Bujanda, Study of plasma-polyethylene interactions using electron beam generated plasmas produced in Ar/SF6 mixtures, J. Appl. Polym. Sci. 117 (2010).

DOI: 10.1002/app.32249

[14] G.G. Jernigan, B.L. VanMil, J.L. Tedesco, J.G. Tischler, E.R. Glaser, A. Davidson III, P.M. Campbell, and D.K. Gaskill, Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production, Nano Lett. 9 (2009).

DOI: 10.1021/nl900803z

[15] N. M. Rodriguez, P. E. Anderson, A. Wootsch, U. Wild, R. Schlogl, and Z. Paal, XPS, EM, and Catalytic Studies of the Accumulation of Carbon on Pt Black, J. Catal. 197 (2001) 365-377.

DOI: 10.1006/jcat.2000.3081

[16] M. Hundhausen, R. Puesche, J. Roehrl, and L. Ley, Characterization of defects in silicon carbide by Raman spectroscopy, Phys. Stat. Sol. B-Basic 245 (2008) 1356-1368.

DOI: 10.1002/pssb.200844052

[17] A. C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W. I. Milne, V. Stolojan, L. M. Brown, A. LiBassi, and B. K. Tanner, Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and Xray reflectivity, J Non-Cryst. Solids 266 (2000).

DOI: 10.1016/s0022-3093(00)00035-1

[18] A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095-14107.

DOI: 10.1103/physrevb.61.14095

In order to see related information, you need to Login.