Antibacterial and Antifungal Glass with High Biocide Performance: Increased Antimicrobial Efficiency by Acid Activation


Article Preview

A compound contending silver ion specimens presents biocidal properties with effect proportional to ion concentration. An efficient biocidal material can be developed by incorporating silver ions species in glasses by ionic exchange process. The reactive area and material porosity are factors that influence the ion exchange reaction efficiency. Previous studies show that the acid activation of glasses increases the absorption capacity and can also increase the exchange capacity. This paper presents preliminary results on the biocide potencial optimization of the biocide powder glass. This process was performed using hydrochloric acid. Different pH (1.00, 3.00 and 5.00), treatment time (2.0, 4.0 and 6.0 hours) and temperature (30.0, 60.0 and 90.0°C) were used in the samples development. Microbiological analysis of the samples was made by disk diffusion method in the bacteria species Echerichia coli and Staphylococcus aureus. Samples were still submitted to EDS and Atomic Absorption.



Materials Science Forum (Volumes 727-728)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




E. Mendes et al., "Antibacterial and Antifungal Glass with High Biocide Performance: Increased Antimicrobial Efficiency by Acid Activation", Materials Science Forum, Vols. 727-728, pp. 1125-1130, 2012

Online since:

August 2012




[1] P. Appendini and J.H. Hotchkiss: Innovative Food Science & Emerging Technologies. 3 (2002), p.113.

[2] M.A. Fiori: Desenvolvimento e Avaliação de Compósitos do tipo Polímero-Madeira com Propriedades Biocidas (Development and available of composites type polymer-wood with biocidal properties). Florianópolis, 2008. Universidade Federal de Santa Catarina (UFSC). (SC).


[3] M.A. Fiori, M.M.S. Paula, E. Angioletto, M.F. Santos, H.G. Riella and M.G. Quadri. Materials Science Forum, 591-593 (2008), 362-367.

[4] E. Angioletto: Desenvolvimento de processo de fabricação de cerâmicas com propriedades antimicrobianas (Development of the Fabrication Process of Ceramics with Antimicrobial Properties). Florianópolis, 2003. Universidade Federal de Santa Catarina (UFSC). (SC).


[5] S. Quintavalla and L. Vicini: Meat Science Vol. 62 (2002), p.373.

[6] C. Catherine: Journal of Food Protection Vol. 625 (1999), p.474.

[7] Antimicrobial plastics additives: Trends and latest development in North America. Plastics Additives & Compounding December 2002, pp.18-21.


[8] M.A. Fiori, M.M.S. Paula, A.M. Bernardin, H.G. Riella and E. Angioletto: Materials Science and Engineering C Vol. 29 (2009), p.1569.

[9] J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta and S. Mukherji: Acta Biomaterialia Vol. 4 (2008), p.707.

[10] V.S. Dagostin, D.L. Golçalves, C.B. Pacheco, W.B. Almeida, I.P. Thomé, C.T. Pich, M.M.S. Paula, L. Silva, E. Angioletto and M.A. Fiori: Mat. Sci. and Eng. C Vol. 30 (2010), p.705.


[11] A. Chakravarti, S. Gangodawila, M.J. Long, N.S. Morris, A.R. Blacklock and D.J. Stickler: The Journal of Urology Vol. 174 (2005), p.1129.

[12] D. Tien, K. Tseng, C. Liao and T. Tsung: Journal of Alloys and Compounds (2008), p.1.

[13] S. Ahn, S. Lee, J. Kook and B. Lim: Dental Materials Vol. 25 (2009), p.206.

[14] H. Perry, C.H. Chilton: Manual de engenharia química. 5 ed. Rio de Janeiro: Guanabara Dois, (1986).

[15] D. Doulia, C. Leodopoulos, K. Gimouhopoulos and F. Rigas: Journal of Colloid and Interface Science Vol. 340 (2009), p.131.


[16] E. Eren and B. Afsin: Journal of Hazardous Materials Vol. 151 (2008), p.682.

[17] S.M. Yu, A.P. Ren, C.L. Chen, Y.X. Chen and X. Wang: Applied Radiation and Isotopes Vol. 64 (2006), p.455.

[18] S. Yang, J. Li, Y. Lu, Y. Chen and X. Wang: Applied Radiation and Isotopes Vol. 67 (2009), p.1600.

[19] S. Sugiyama, T. Moriga, M. Goda, H. Hayashi and John B. Moffat: Journal Chem. Soc. Faraday Trans. Vol. 92 (1996), p.4305.