On the Fabrication Parameters of Buried Microchannels Integrated in In-Plane Silicon Microprobes


Article Preview

This paper aims the characterization of buried microchannels in silicon realized by deep reactive ion etching. The effects of dry etching parameters on the integrability into hollow microprobes are thoroughly investigated from both technological and functional aspects. Results are supposed to give physiology related probe designers a deeper insight into microfabrication-related issues.



Edited by:

T. Berecz, K. Májlinger, I. N. Orbulov and P. J. Szabó




Z. Fekete et al., "On the Fabrication Parameters of Buried Microchannels Integrated in In-Plane Silicon Microprobes", Materials Science Forum, Vol. 729, pp. 210-215, 2013

Online since:

November 2012




[1] A. L. Benabid, Deep brain stimulation for Parkinson's disease, Current Opinion in Neurobiology 13 (2003) 696-706.

DOI: https://doi.org/10.1016/j.conb.2003.11.001

[2] K. Seidl, S. Spieth, S. Herwik, J. Steigert, R. Zengerle, O. Paul, P. Ruther, In-plane silicon probes for simultaneous neural recording and drug delivery, J. Micromech. Microeng. 20 (2010) 105006.

DOI: https://doi.org/10.1088/0960-1317/20/10/105006

[3] J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, A multichannel neural probe for selective chemical delivery at the cellular level, IEEE Trans. Biomed. Eng. 44 (1997) 760–769.

DOI: https://doi.org/10.1109/10.605435

[4] K. C. Cheung, K. Djupsund, Y. Dan, and L. P. Lee, Implantable multichannel electrode array based on SOI Technology, J. Microelectromech. Syst. 12 (2003) 179–188.

DOI: https://doi.org/10.1109/jmems.2003.809962

[5] M. J. de Boer, R. W. Tjerkstra, J. W. Berenschot, H. V. Jansen, G. J. Burger, J. G. H. Gardeniers, M. Elwenspoek, and A. van den Berg, Micromachining of Buried Micro Channels in Silicon, J. Microelectromech. Syst. 9 (2000) 94-103.

DOI: https://doi.org/10.1109/84.825783

[6] M. Dijkstra, M. J. de Boer, J. W. Berenschot, T. S. J. Lammerink, R. J. Wiegerink, M. Elwenspoek, A versatile surface channel concept for microfluidic applications, J. Micromech. Microeng. 17 (2007) 1971–(1977).

DOI: https://doi.org/10.1088/0960-1317/17/10/007

[7] D. Sparks, and T. Hubbard, Micromachined needles and lancets with design adjustable bevel angles, J. Micromech. Microeng. 14 (2004) 1230–1233.

DOI: https://doi.org/10.1088/0960-1317/14/8/016

[8] L. J. Fernandez, A. Altuna, M. Tijero, G. Gabriel, R. Villa, J. Rodraguez, M. Batlle, R. Vilares, J. Berganzo, and F. J. Blanco, Study of functional viability of SU-8 based microneedles for neural applications, J. Micromech. Microeng. 19 (2009).

DOI: https://doi.org/10.1088/0960-1317/19/2/025007

[9] S. Park, Y. Jang, H. C. Kim, and K. Chun, Fabrication of drug delivery system with piezoelectric micropump for neural probe, Proc. 23rd Int. Tech Conf. on Circuits/Systems, Computers and Communications, Yamaguchi, Japan (2008) 1149–52.

[10] D. Ziegler, T. Suzuki, and S. Takeuchi, Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene, J. MEMS 15 (2006) 1477–82.

DOI: https://doi.org/10.1109/jmems.2006.879681

[11] A. Agarwal, and N. Ranganathan, W. L. Ong, K. C. Tang, and L. Yobas, Self-sealed circular channels for micro-fluidics, Sens. & Act. A 142 (2008) 80–87.

DOI: https://doi.org/10.1016/j.sna.2007.04.022

[12] S. J. Paik, S. Byuna, J. M. Lima, Y. Park, A. Lee, S. Chung, J. Changa, K. Chuna, and D. Choa, In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems, Sens. & Act. A 114 (2004) 276–284.

DOI: https://doi.org/10.1016/j.sna.2003.12.029

[13] C. Rusu, R. van't Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, Direct Integration of Micromachined Pipettes in a Flow Channel for Single DNA Molecule Study by Optical Tweezers, J. Microelectromech. Syst. 10 (2001).

DOI: https://doi.org/10.1109/84.925758

[14] Z. Fekete, A. Pongrácz, Á. Szendrey, P. Fürjes, Buried microchannels in silicon with planar surface, Proc. of 22nd Micromechanics Europe, Oslo, Norway (2011) A03.

[15] R. Abdolvand, and F. Ayazia, An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon, Sens. and Act. A 144 (2008) 109-116.

DOI: https://doi.org/10.1016/j.sna.2007.12.026

[16] H. Jansen, M. de Boer, and M. EIwenspoek, High aspect ratio trench etching for MEMS applications, Proc. IEEE MEMS'96, San Diego, California, USA (1996) 250.

[17] H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, Rie lag in high aspect ratio trench etching of silicon, Microelectronic Engineering 35 (1997) 45-50.

DOI: https://doi.org/10.1016/s0167-9317(96)00142-6

[18] H. Jansen, M. de Boer, S. Unnikrishnan, M. Louwerse, and M. Elwenspoek, Black silicon method X, J. Micromech. Microeng. 19 (2009) 033001.

[19] C. Chung, Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system, J. Micromech. Microeng. 14 (2004) 656–662.

DOI: https://doi.org/10.1088/0960-1317/14/4/029

[20] K. P. Larsen, D. H. Petersen, and O. Hansen, Study of the Roughness in a Photoresist Masked, Isotropic, SF6-Based ICP Silicon Etch, J. of Electroch. Soc., 153 (2006) G1051-G1058.

DOI: https://doi.org/10.1149/1.2357723

Fetching data from Crossref.
This may take some time to load.