Hydrogen Storage, Microstructure and Mechanical Properties of Strained Mg65Ni20Cu5Y10 Metallic Glass


Article Preview

Melt-spun amorphous Mg65Ni20Cu5Y10 metallic glass compacts were subjected to severe shear deformation by high-pressure torsion. High-resolution X-ray diffraction analysis and scanning electron microscopy revealed that high-pressure torsion resulted in a deformation dependent microstructure. Nanoindentation measurements indicated that the heavy shear deformation yields an increase in hardness. High-pressure calorimetry measurements revealed that hydrogen uptake in the fully amorphous alloy occurs at a significantly lower temperature compared to the fully crystallized state, while the amount of absorbed hydrogen increased considerably after shear strain due to the formation of Mg2Ni crystals.



Edited by:

T. Berecz, K. Májlinger, I. N. Orbulov and P. J. Szabó




Á. Révész et al., "Hydrogen Storage, Microstructure and Mechanical Properties of Strained Mg65Ni20Cu5Y10 Metallic Glass", Materials Science Forum, Vol. 729, pp. 74-79, 2013

Online since:

November 2012




[1] L. Schlapbach, A. Züttel, Nature 414 (2001) 353-358.

[2] R.A. Varin, T. Czujko, Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer Science, New York, (2009).

[3] R.A. Varin, T. Czujko, Ch. Chiu, Z. Wronski, J. Alloys Compd. 424 (2006) 356-364.

[4] L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Materials Science Forum 225 (1996) 853-858.

DOI: 10.4028/www.scientific.net/msf.225-227.853

[5] G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, J. Alloys Compd. 276 (1998) 302-306.

[6] M. Danaie, D. Mitlin, J. Alloys Compd. 476 (2008) 590-598.

[7] M. Porcu, A.K. Petford-Long, J.M. Sykes, Journal of Alloys and Compounds 453 (2008) 341-346.

[8] V. Fuster, G. Urretavizcaya, F.J. Castro, J. Alloys Compd. 481 (2009) 673-680.

[9] D. Fátay, Á. Révész, T. Spassov, Journal of Alloys and Compounds 399 (2005) 237-241.

[10] M. Hara, S. Morozumi, K. Watanabe, J. Alloys Compd. 414 (2006) 207-214.

[11] S. Kalinichenka, L. Röntzsch, C. Baehetz, B. Kieback, J. Alloys. Compd. 496 (2010) 608-613.

[12] T. Spassov, U. Köster, J. Alloys Compd. 279 (1998) 279-286.

[13] T. Spassov, U. Köster, J. Alloys Compd. 287 (1999) 243-250.

[14] Y.H. Zhang, D.L. Zhao, B.W. Li, H.P. Ren, S.H. Guo, X.L. Wang, J. Alloys Compd. 491 (2010) 589-594.

[15] Y. Kusadome, K. Ikeda, Y. Nakamori, S. Orimo, Z. Horita, Scripta Mater. 57 (2007) 751.

[16] K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, Scripta Mater. 64 (2011) 880-883.

[17] D.R. Leiva, A. Moreira Jorge, T.T. Ishikawa, J. Huot, D. Fruchart, S. Miraglia, C.S. Kiminami, W.J. Botta, Adv. Eng. Mater 12 (2010) 786-792.

DOI: 10.1002/adem.201000030

[18] Á. Révész, Zs. Kánya, T. Verebélyi, P.J. Szabó, A.P. Zhilyaev, T. Spassov J. Alloys Compd. 504 (2010) 83-88.

[19] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893-979.

[20] S. Hóbor, Zs. Kovács, Á. Révész, J. Alloys Compd. 509 (2011) 8641-48.

[21] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.

[22] Á. Révész, Á. Kis-Tóth, L.K. Varga, E. Schafler, I. Bakonyi, T. Spassov, Int. J. Hydrogen Energy, 37 (2012) 5769-5776.

DOI: 10.1016/j.ijhydene.2011.12.160

[23] F.O. Méar, D.V. Louzguine-Luzgin, A. Inoue, J. Alloys Compd. 496 (2010) 149-154.

[24] F. Spaepen, Acta Metall. 25 (1977) 407-415.

Fetching data from Crossref.
This may take some time to load.