Porous Metal-Organic Framework Materials: Microwave Assisted Synthesis and Oxidative Catalytic Tests

Abstract:

Article Preview

Metal-Organic Framework Materials MIL‑101(Cr) ([Cr3X(H2O)2O(bdc)3]∙n(H2O), where X = F or OH, n ≈ 25 and H2bdc stands for 1,4-benzene-dicarboxylic acid] and MOF‑5(Zn) [Zn4O(bdc)3] were prepared by hydrothermal or solvothermal methods as well as Microwave‑Assisted Synthesis (MWAS), for which the detailed synthetic parameters were optimized. The crystal structures were confirmed by powder X-ray diffraction and the materials were further characterized by FT‑IR absorption spectroscopy. MIL‑101(Cr) and MOF‑5(Zn) showed weak catalytic activity in the oxidation of terpene, thiophene and cis-cyclooctene. Reasonable catalytic activity was observed for MOF-5(Zn) in the epoxidation of cis-cyclooctene and a 100 % of selectivity was observed for the epoxide. The structural stability of the materials was tested under the employed catalytic medium for oxidation reactions. MOF-5(Zn) revealed a remarkable structural stability at high temperature and also in the presence of high oxidant amounts.

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Edited by:

Ana Maria Pires Pinto and António Sérgio Pouzada

Pages:

1024-1029

DOI:

10.4028/www.scientific.net/MSF.730-732.1024

Citation:

A. D.S. Barbosa et al., "Porous Metal-Organic Framework Materials: Microwave Assisted Synthesis and Oxidative Catalytic Tests", Materials Science Forum, Vols. 730-732, pp. 1024-1029, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] C. Sanchez, K.J. Shea, S. Kitagawa, Recent progress in hybrid materials science, Chem. Soc. Rev. 40 (2011) 471-472.

[2] H.L. Jiang, Q. Xu, Porous metal-organic frameworks as platforms for functional applications, Chem. Commun. 47 (2011) 3351-3370.

DOI: 10.1039/c0cc05419d

[3] M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Luminescent metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1330-1352.

DOI: 10.1039/b802352m

[4] M. Clemente-Leon, E. Coronado, C. Marti-Gastaldoz, F.M. Romero, Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes, Chem. Soc. Rev. 40 (2011) 473-497.

DOI: 10.1039/c0cs00111b

[5] Y. Liu, W.M. Xuan, Y. Cui, Engineering Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation, Adv. Mater. 22 (2010) 4112-4135.

DOI: 10.1002/adma.201000197

[6] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477-1504.

DOI: 10.1039/b802426j

[7] T. Uemura, N. Yanai, S. Kitagawa, Polymerization reactions in porous coordination polymers, Chem. Soc. Rev. 38 (2009) 1228-1236.

DOI: 10.1039/b802583p

[8] B.L. Chen, S.C. Xiang, G.D. Qian, Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules, Accounts Chem. Res. 43 (2010) 1115-1124.

DOI: 10.1021/ar100023y

[9] R.C. Huxford, J. Della Rocca, W.B. Lin, Metal-organic frameworks as potential drug carriers, Curr. Opin. Chem. Biol. 14 (2010) 262-268.

DOI: 10.1016/j.cbpa.2009.12.012

[10] J. Klinowski, F.A.A. Paz, P. Silva, J. Rocha, Microwave-Assisted Synthesis of Metal-Organic Frameworks, Dalton Trans. 40 (2011) 321-330.

DOI: 10.1039/c0dt00708k

[11] L. Cunha-Silva, R. Ahmad, M.J. Carr, A. Franken, J.D. Kennedy, M.J. Hardie, One-dimensional coordination polymers with phenyl-carbaborane anions: Ag(I)/4, 4 '-bipyridine and 2, 3-bis-(2-pyridyl)pyrazine complexes, Cryst. Growth Des. 7 (2007).

DOI: 10.1021/cg070048p

[12] L. Cunha-Silva, D. Ananias, L.D. Carlos, F.A.A. Paz, J. Rocha, Synchrotron powder structure of a new layered lanthanide-organic network, Z. Kristallogr. 224 (2009) 261-272.

DOI: 10.1524/zkri.2009.1132

[13] L. Cunha-Silva, S. Lima, D. Ananias, P. Silva, L. Mafra, L.D. Carlos, M. Pillinger, A.A. Valente, F.A.A. Paz, J. Rocha, Multi-functional rare-earth hybrid layered networks: photoluminescence and catalysis studies, J. Mater. Chem. 19 (2009).

DOI: 10.1039/b817381h

[14] L. Cunha-Silva, A. Westcott, N. Whitford, M.J. Hardie, Hydrogen-bonded 3-D network structures of lanthanide aquo ions and 4, 4 '-bipyridine with carbaborane anions, Cryst. Growth Des. 6 (2006) 726-735.

DOI: 10.1021/cg050504e

[15] F.N. Shi, L. Cunha-Silva, T. Trindade, F.A.A. Paz, J. Rocha, Three-Dimensional Lanthanide-Organic Frameworks Based on Di-, Tetra-, and Hexameric Clusters, Cryst. Growth Des. 9 (2009) 2098-2109.

DOI: 10.1021/cg8004932

[16] P.C.R. Soares-Santos, L. Cunha-Silva, F.A.A. Paz, R.A.S. Ferreira, J. Rocha, L.D. Carlos, H.I.S. Nogueira, Photo luminescent Lanthanide-Organic Bilayer Networks with 2, 3-Pyrazinedicarboxylate and Oxalate, Inorg. Chem. 49 (2010) 3428-3440.

DOI: 10.1021/ic902522j

[17] G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040-(2042).

DOI: 10.1126/science.1116275

[18] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276-279.

In order to see related information, you need to Login.