XRD, SEM and Petrologic Characterization of a L4-L5 Ordinary Chondrite Meteorite


Article Preview

In this work, a meteorite sample recovered in Morocco is characterized by detailed petrographic observations in transmitted and reflected light optical microscopy and by using XRD and SEM and it is tentatively classified. VIS/NIR spectral analysis of the same meteorite in a previous study suggested that it is seemingly related to the HAMLET meteorite, which was classified as LL4 chondrite. From the obtained results in the refinement of the analysis of the present study, this meteorite is classified as L4 to L5 chondrite. Composition maps across selected chondrules and in the matrix are presented.



Materials Science Forum (Volumes 730-732)

Edited by:

Ana Maria Pires Pinto and António Sérgio Pouzada




T. M. Seixas et al., "XRD, SEM and Petrologic Characterization of a L4-L5 Ordinary Chondrite Meteorite", Materials Science Forum, Vols. 730-732, pp. 170-175, 2013

Online since:

November 2012




[1] R. Hutchinson, I. P. Williams, S. S. Russel, Theories of planet formation: constraints from the study of meteorites, Phil. Trans. R. Soc. Lond. A 359 (2001) 2077-93.

[2] T. H. Burbine, T. J. McCoy, A. Meibom, B. Gladman, K. Keil, in: W. F Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (eds. ), Asteroids III, Univ. Arizona Press (2002) 653.

[3] E. R. D. Scott, Meteorite evidence for the accretion and collisional evolution of asteroids. In: W. F Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (eds. ), Asteroids III, Univ. Arizona Press (2002) 697-709.

[4] G. R. Huss, A. E. Rubin, J. N. Grossman, Thermal metamorphism in chondrites, in: D. S. Lauretta, H. Y. McSween Jr (eds. ), Meteorites and the Early Solar System II, Univ. Arizona Press (2006) 567–586.

[5] P. Vernazza, R. P. Binzel, A. Rossi, M. Fulchignoni, M. Birlan, Solar wind as the origin of rapid reddening of asteroid surfaces, Nature 458 (2009) 993-95.

DOI: https://doi.org/10.1038/nature07956

[6] Z. Diogo, T. M. Seixas, M. A. Salgueiro da Silva, F. Almeida, M. Marques, A. Cunha, Laboratorial study of space weathering effects on meteorite samples, e-Terra, Vol. 16, nº 10 (2010).

[7] Information on http: /www. planetary. brown. edu/relab.

[8] Monica M. Grady, Natural History Museum, London, Catalogue of Meteorites, 5th ed., Cambridge University Press (2000).

[9] Joint Committee on Powder Diffraction Standards / International Center for Diffraction Data-ICDD, Hanawalt Search Manual / Inorganic Phases, Powder Diffraction File, Pennsylvania, JCPDS/ICDD (2003).

DOI: https://doi.org/10.1017/s0885715600012732

[10] R. Hutchinson, Meteorites: a Petrologic, Chemical and Isotopic Synthesis, Cambridge University Press (2004) 506 pp.

[11] R.H. Hewins, Chondrules and the protoplanetary disk: an overview. In: R.H. Hewins, R.H. Jones, E.R.D. Scott, eds., Chondrules and the Protoplanetary Disk, Cambridge University Press (1996) 3-9.

[12] N. Morimoto, Nomenclature of pyroxenes. Bull. Minéral. 111 (1988) 535-550.

[13] A. Poldervaart, The relation of orthopyroxene to pigeonite. Mineral. Mag. 28 (1947) 164-172.

[14] W.R. Van Schmus, Mineralogy, petrology and classification of types 3 and 4 carbonaceous chondrites, In: P.M. Millman, ed., Meteorite Research, D. Reidel (1969) 480-491.

DOI: https://doi.org/10.1007/978-94-010-3411-1_39

[15] A.J. Brearley, R.H. Jones, Planetary Materials, In: J.J. Papike (ed. ) Mineralogical Society of America (1998) 313-398.

[16] W.R. Van Schmus, J.A. Wood, A chemical-petrological classification for the chondritic meteorites, Geochim. Cosmochim. Acta 31 (1967) 747-765.

DOI: https://doi.org/10.1016/s0016-7037(67)80030-9