Finite Element Model of Granite Ablation with UV Laser


Article Preview

This work presents 3-D Finite Element Model of the heat transfer inside granite during pulsed laser ablation with the aim of achieving laser cleaning treatment without damaging the stone surface. The model is focused on biotite, the most affected granite-forming mineral, owing to its low melting temperature. The model predicts sizes of the molten region that are consistent with experimental results. Moreover, the effects of different irradiation parameters; i.e., fluence, laser repetition frequency, and speed of scan have been investigated through the size of the biotite molten region. This model may be considered as the first stage of a comprehensive model of the laser ablation process in granite.



Materials Science Forum (Volumes 730-732)

Edited by:

Ana Maria Pires Pinto and António Sérgio Pouzada






E. Saavedra et al., "Finite Element Model of Granite Ablation with UV Laser", Materials Science Forum, Vols. 730-732, pp. 519-524, 2013

Online since:

November 2012




[1] C. Fotakis, D. Anglos, V. Zafiropulos, S. Georgiou, V. Tornari, Lasers in the Preservation of Cultural Heritage. Principles and Applications (Taylor & Francis, Boca Raton, 2007).

DOI: 10.1063/1.2825073

[2] C. M. Grossi, F.J. Alonso, R.M. Esbert, A. Rojo, Effect of laser cleaning on granite color changes, Color Res. Appl. 32 (2007) 152-159.

DOI: 10.1002/col.20299

[3] A.J. López, T. Rivas, J. Lamas, A. Ramil, A. Yáñez, Optimization of laser removal of biological crusts in granites, Appl. Phys A 100 (2010) 733-739.

DOI: 10.1007/s00339-010-5652-x

[4] A. Navrotsky; Thermodynamic properties of minerals Mineral Physics and Crystallography. A Handbook of Physical Constants; AGU Reference Shelf 2.

DOI: 10.1029/rf002p0018

[5] J.C. Miller, R.F. Haglund, laser Ablation and Desorption, Academic Press, USA, (1998).

[6] A. Yáñez, J.C. Álvarez, A.J. López, G. Nicolás, J.A. Pérez, A. Ramil, E. Saavedra, Modelling of temperature evolution on metals during laser hardening process, Appl. Surf. Sci 186 (2002) 611-616.

DOI: 10.1016/s0169-4332(01)00696-1

[7] E. Saavedra, A. Ramil, A.J. López, J.C. Álvarez, Laser Hardening of XC42 Steel: Numerical Analysis of Quenched Area, Materials Science Forum 636-637 (2010) 1165-1171.

DOI: 10.4028/

[8] A. Suárez, M.J. Tobar, A. Yáñez, I. Pérez, J. Sampedro, V. Amigó, J.J. Candel, Modeling of phase transformations of Ti6Al4 V during laser metal deposition, Physics Procedia, 12 (2011) 666-673.

DOI: 10.1016/j.phpro.2011.03.083

[9] J.C. Conde, F. Lusquiños, P. González, J. Serra, B. León, L. Culterra, D. Guido, A. Perrone, laser Ablation of Silicon and copper targets. Experimental and finite elements Studies, Appl. Phys. A. 79 (2004) 1105-1110.

DOI: 10.1007/s00339-004-2656-4

[10] V. Oliveira, R. Vilar, Finite element simulation of pulsed laser ablation of titanium carbide, Appl, Surf. Sci. 253 (2007)7810-7814.

DOI: 10.1016/j.apsusc.2007.02.101

[11] N.A. Vasantgadkar, U. V. Bhandarkar, S. S. Joshi, A finite element model to predict the ablation depth in pulsed laser ablation, Thin Solid Films 519 (2010) 1421–1430.

DOI: 10.1016/j.tsf.2010.09.016

[12] E. Saavedra, A. Ramil, J.C. Álvarez, J.M. Amado, A.J. López, J. Sanesteban, M.J. Tobar, A. Yáñez, Laser hardening simulation with finite element method: an analysis of the errors introduced by the discretization, in P. Neittaanmäki, et al. (Eds. ), Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS04), University of Jyväskylä, (2004).

In order to see related information, you need to Login.