Effect of Boron on the Amorphization of Fe-Si Alloys by Mechanical Alloying


Article Preview

The amorphization process by mechanical alloying in the Fe-Si alloy system has been studied. High energy ball milling has been applied for alloys synthesis. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to monitor the structural and phase transformations through the different stages of milling. The addition of amorphous boron in the milling process and the increase of the milling time were used to improve the formation of the amorphous phase. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of equilibrium intermetallic compounds.



Materials Science Forum (Volumes 730-732)

Edited by:

Ana Maria Pires Pinto and António Sérgio Pouzada




P. Urban et al., "Effect of Boron on the Amorphization of Fe-Si Alloys by Mechanical Alloying", Materials Science Forum, Vols. 730-732, pp. 739-744, 2013

Online since:

November 2012




[1] J.C. Benjamin, Met. Trans. 1 (1970) 2943-2951.

[2] C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Materials Science and Engineering A304-306 (2001) 151-158.

DOI: https://doi.org/10.1016/s0921-5093(00)01465-9

[3] F. Petzoldt, B. Scholz, H.D. Kunze, Study of the mechanism of amorphization by mechanical alloying, Materials Letters 5 (1987) 280-284.

DOI: https://doi.org/10.1016/0167-577x(87)90111-x

[4] B.Q. Zhang, L. Lu, M.O. Lai, Evolution of vacancy densities in powder particles during mechanical alloying, Physica B 325 (2003) 120-129.

DOI: https://doi.org/10.1016/s0921-4526(02)01459-x

[5] J. Díaz, N. Hamdan, P. Jalil, Z. Hussain, S.M. Valvidares, J.M. Alameda, Understanding the magnetic anisotropy in Fe-Si amorphous alloys, IEEE Transactions on Magnetics 38 (2002) 2811-2813.

DOI: https://doi.org/10.1109/tmag.2002.803566

[6] M. Abdellaoui, Microstructural and thermal investigations of iron-silicon nanocomposite materials synthesized by rod milling, Journal of Alloys and Compounds 264 (1998) 285-292.

DOI: https://doi.org/10.1016/s0925-8388(97)00268-5

[7] T. Tokunaga, H. Ohtani, M. Hasebe, Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Fe-Si-B system, Computer Coupling of Phase Diagrams and Thermochemistry 28 (2004) 354-362.

DOI: https://doi.org/10.1016/j.calphad.2004.11.004

[8] Z.H. Lai, H. Conrad, G.Q. Teng, Y.S. Chao, Nanocrystallization of amorphous Fe-Si-B alloys using high current density electropulsing, Materials Science and Engineering A287 (2000) 238-247.

DOI: https://doi.org/10.1016/s0921-5093(00)00781-4

[9] K. Matsuki, F. Kogiku, N. Morito, Influence of surface roughness on magnetic properties of Fe-Si-B amorphous alloys, IEEE Transactions on Magnetics 34 (1998) 1180-1182.

DOI: https://doi.org/10.1109/20.706466

[10] M. Hagiwara, A. Inoue, T. Masumoto, Mechanical properties of Fe-Si-B- amorphous wires produced by in-rotating-water spinning method, Metalurgical Transactions A (Physical Metallurgy and Materials Science) 13A (1982) 373-382.

DOI: https://doi.org/10.1007/bf02643346

[11] A. Inoue, B.L. Shen, C.T. Chang, Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa, Intermetallics (2006) 1-9.

DOI: https://doi.org/10.1016/j.intermet.2006.01.038

[12] D. Szewieczek, A. Baron, Electrochemical corrosion properties of amorphous Fe78Si13B9 alloy, Journal of Materials Processing Technology 157-158 (2004) 442-445.

DOI: https://doi.org/10.1016/j.jmatprotec.2004.09.069