Inhibition of Positronium Formation in Yttria Stabilized Zirconia Nanopowders Modified by Addition of Chromia

Abstract:

Article Preview

The effect of chromia additive on defects in yttria stabilized zirconia (YSZ) nanopowders was investigated in this work. It was found that positrons are trapped at vacancy-like misfit defect at grain boundaries and at larger defects situated at triple points. Moreover, a long-lived ortho-positronium contribution was found in YSZ nanopowder without chromia. Addition of chromia prolongs the lifetime of positrons trapped at vacancy-like misfit defects which indicates segregation of Cr ions at grain interfaces and interaction of Cr with vacancy-like misfit defets. Moreover addition of chromia completely suppresses formation of positronium.

Info:

Periodical:

Edited by:

Jozef Krištiak, Jan Kuriplach and Pradeep K. Pujari

Pages:

249-253

Citation:

O. Melikhova et al., "Inhibition of Positronium Formation in Yttria Stabilized Zirconia Nanopowders Modified by Addition of Chromia", Materials Science Forum, Vol. 733, pp. 249-253, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] A.H. Heuer and L.W. Hobbs: Science and Technology of Zirconia. Advances in Ceramics Vol. 3 (The American Ceramic Society, Columbus, OH 1981).

[2] I. Procházka, J. Čížek, O. Melikhova, J. Kuriplach, T.E. Konstantinova and I.A. Danilenko: Positron annihilation study of yttria-stabilized zirconia nanopowders containing Cr2O3 additive, J. Phys.: Conf. Series Vol. 265 (2011), p.012020.

DOI: https://doi.org/10.1088/1742-6596/265/1/012020

[3] F. Bečvář, J. Čížek, I. Procházka and J. Janotová: The asset of ultra-fast digitizers for positron-lifetime spectroscopy, Nucl. Instrum. Methods Phys. Res. A Vol. 539 (2005), pp.372-385.

DOI: https://doi.org/10.1016/j.nima.2004.09.031

[4] I. Procházka, I. Novotný and F. Bečvář: Application of Maximum-Likelihood Method to Decomposition of Positron-Lifetime Spectra to Finite Number of Components, Mater. Sci. Forum Vol. 255-257 (1997), pp.772-774.

DOI: https://doi.org/10.4028/www.scientific.net/msf.255-257.772

[5] A. Yashschishyn, A.M. Korduban, V.V. Trachevskiy, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova and I.K. Nosolev: XPS and ESR spectroscopy of ZrO2-Y2O3-Cr2O3 nanopowders, Functional Materials Vol. 17 (2010), pp.306-310.

[6] J. Čížek, O. Melikhova, I. Procházka, J. Kuriplach, R. Kužel, G. Brauer, W. Anwand, T.E. Konstantinova and I.A. Danilenko: Defect studies of nanocrystalline zirconia powders and sintered ceramics, Phys. Rev. B Vol. 81 (2010), p.024116.

DOI: https://doi.org/10.1103/physrevb.81.024116

[7] R. Krause-Rehberg and H.S. Leipner: Positron Annihilation in Semiconductors – Defect Studies, (Springer, Berlin 1999).

DOI: https://doi.org/10.1007/978-3-662-03893-2_4

[8] M. Eldrup, D. Lightbody and J.N. Sherwood: The temperature dependence of positron lifetimes in solid pivalic acid, Chem. Phys. Vol. 63 (1981), pp.51-58.

DOI: https://doi.org/10.1016/0301-0104(81)80307-2

[9] S. Huang, Y. Dai, H. Zhang and Z. Chen: Chemical quenching and inhibition of positronium in Cr2O3/Al2O3 catalysts, Wuhan University J. Natur. Sci. Vol. 16 (2011), pp.308-312.

DOI: https://doi.org/10.1007/s11859-011-0755-6