Photocatalytic and Photoelectro-Chemical Study of Ferrites for Water Splitting Applications: A Comparative Study


Article Preview

This article presents a comparative study on the synthesis and characterization of the binary and ternary ferrites for photocatalytic and photoelectrochemical applications. The importance and role of ferrite photocatalysts is discussed in context to the visible-light active photocatalyst application viz. for hydrogen production via. water-splitting. It also demonstrates that computational-exploration of any material system is key to identify, and achieve visible-light active photocatalysts.



Edited by:

Rajesh J. Tayade




R. Dom and P. H. Borse, "Photocatalytic and Photoelectro-Chemical Study of Ferrites for Water Splitting Applications: A Comparative Study", Materials Science Forum, Vol. 734, pp. 334-348, 2013

Online since:

December 2012




[1] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor based photocatalytic hydrogen generation, Chem. Rev., 110(2010) 6503–6570.

[2] M. G. Walter, E. L. Warren, J. R. McKone, S.W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Solar water splitting cells, Chem. Rev., 110 (2010) 6446–6473.

DOI: 10.1021/cr1002326

[3] P. V. Kamat, K. Tvrdy, D. R. Baker, J. G. Radich, Beyond photovoltaics-semiconductor nanoarchitechture for liquid junction solar cells, Chem. Rev., 110 (2010) 6664–6688.

DOI: 10.1021/cr100243p

[4] J. S. Lee, Photocatalytic water splitting under visible light with particulate semiconductor photocatalysts, Catal. Surv. Asia, 9 (2005) 217-227.

DOI: 10.1007/s10563-005-9157-0

[5] A. Kudo, Y. Miseki, Heterogeneous photocatalytic materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278.

DOI: 10.1039/b800489g

[6] F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater. 20 (2008) 35-54.

[7] H. G. Kim, D. W. Hwang, J. S. Lee, An undoped, single-phase oxide photocatalyst working under visible light,J. Am. Chem. Soc. 126 (2004) 8912-8913.

DOI: 10.1021/ja049676a

[8] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN: ZnO solid solution as a photocatalyst for visible-light driven overall water splitting, J. Am. Chem. Soc. 127 (2005) 8286-8287.

DOI: 10.1021/ja0518777

[9] H. G. Kim, P. H. Borse, W. Choi, J. S. Lee, Photocatalytic nano-diodes for visible light photocatalysis, Angew. Chem. Int. Ed. 44 (2005) 4585-4589.

DOI: 10.1002/anie.200500064

[10] J. S. Jang, D. W. Hwang, J. S. Lee, CdS-AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light, Catal. Today 120 (2007) 174-181.

DOI: 10.1016/j.cattod.2006.07.052

[11] Y. Matsumoto, Energy positions of oxide semiconductors, J. Solid Stat. Chem. 126 (1996) 227-234.

[12] T. Sreethawong, Y. Suzuki, S. Yoshikawa, Synthesis, characterization and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania, J. Solid Stat. Chem. 178 (2005) 329-338.

DOI: 10.1016/j.jssc.2004.11.014

[13] J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung, B. H. Shon , J.S. Lee, Formation of crystalline TiO2-xNx and its photocatalytic activity, J. Solid State Chem. 179 (2006) 1067-1075.

DOI: 10.1016/j.jssc.2006.01.004

[14] H. G. Kim, P. H. Borse, J. S. Jang, O. Jung, Y. J. Suh, J. S. Lee, Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis, Chem. Comm. (2009) 5889-5891.

DOI: 10.1039/b911805e

[15] E. D. Jeong, P. H. Borse, J. S. Jang, J. S. Lee, C. R. Cho, J. S. Bae, S. Park, O. S. Jung, S. M. Ryu, M. S. Won, H. G. Kim, Physical and optical properties of nanocrystalline calcium ferrite synthesized by the polymerized complex method, J. Nanosci. Nanotech. 9 (2009).

DOI: 10.1166/jnn.2009.ns31

[16] X. Wang, Y. Lin, X. Ding, J. Jiang, Enhanced visible light response photocatalytic activity of Bismuth ferrite nanoparticles, J. Alloys Compd. 23 (2011) 6585-6588.

DOI: 10.1016/j.jallcom.2011.03.074

[17] C-H Chen, Y-H Liang, W-D Zhang, ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible light irradiation, J. Alloys Compd. 501 (2010) 168-172.

DOI: 10.1016/j.jallcom.2010.04.072

[18] H. Yang, J. Yan, Z. Lu, X. Cheng and Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the hydrogen evolution under visible light irradiation, J. Alloys Compd. 476 (2009) 715-719.

DOI: 10.1016/j.jallcom.2008.09.104

[19] Z. Wang, S. Zhu, S. Zhao, H. Hu, Synthesis of core-shell Fe3O4@SiO2@MS(M: Pb, Zn, Hg) microspheres and their application as photocatalysts, J. Alloys Compd., 509 (2011) 6893-6898.

DOI: 10.1016/j.jallcom.2011.03.175

[20] E. Casbeer, V.K. Sharma , and X-Z Li, Synthesis and photocatalytic activity of ferrites under visible light – a review, Separation and Purification Technology, 87 (2012)  1-14.

DOI: 10.1016/j.seppur.2011.11.034

[21] K.J. McDonald, K-S. Choi, Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater., 23 (2011) 4863-4869.

DOI: 10.1021/cm202399g

[22] Krishnan Rajeshwar, Robert McConnell, and Stuart Licht, Solar hydrogen generation, toward a renewable energy future, Springer Science, New York, (2008).

DOI: 10.1007/978-0-387-72810-0_1

[23] Lionel Vayssieres, On solar hydrogen nanotechnology, John Wiley & Sons (Asia) Pte Ltd, Singapore (2009).

[24] A. Kudo, photocatalyst materials for water splitting, Catalysis Surveys from Asia, 7 (2003) 31-38.

[25] P.H. Borse, J.S. Lee, H.G. Kim, Theoretical band energetic of Ba(M0. 5Sn0. 5)O3 for solar photoactive applications, J. App. Phys., 100 (2006) 124915_1-3.

DOI: 10.1063/1.2401040

[26] P.H. Borse, U.A. Joshi, S. M. Ji, J.S. Jang, J.S. Lee, E.D. Jeong, Band gap tuning of lead-substituted BaSnO3 for visible light photocatalysis, Appl. Phys. Letts. 90 (2007) 034103_1-3.

DOI: 10.1063/1.2430932

[27] G. Rollmann, A. Rohrbach, P. Entel, and J. Hafner, First principles calculation of the structure and magnetic phases of hematite, Phys. Rev. B 69, 165107 (2004) 1-12.

DOI: 10.1103/physrevb.69.165107

[28] Moore, Elaine, First principles study of the mixed oxide α-FeCrO3, Phys. Rev. B, 76 (2007) 195107_1-7.

[29] P. Blaha, K. Schwarz and J. Luitz, WIEN97, Vienna University of Technology, 1997. Improved and updated Unix version of the original copyrighted WIEN code.

[30] M. Gatesh, V. Petkov, S.K. Pradhan, T. Vogt, J. Appl Crystallogr, 38 (2005) 772-779.

[31] J.C. Waerenborgh, M.O. Figueiredeo, J.M.P. Carbral, L.C.J. Pereira, Temperature and composition dependence of the cation distribution in synthetic ZnFeyAl2-yO4(0≤y≤1) spinels, J. Solid Stat. Chem., 111 (1994) 300-309.

DOI: 10.1006/jssc.1994.1231

[32] Natl. Bur. Stand. (U.S. ) Monogr. 25, 18 (1981) 20.

[33] M.F. Kupriyanov, and E.G. Fesenko, Kristallografiya 6 (1961) 794-796.

[34] A. Hellman, and R. G. S. Pala, First principles study of photoinduced water splitting on Fe2O3, J. Phys. Chem. C, 115, (2011) 12901–12907.

DOI: 10.1021/jp200751j

[35] R. Dom, R. Subasri, K. Radha, P. H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg)photocatalyst by microwave irradiation Sol. State. Commun., 151 (2011) 470–473.

DOI: 10.1016/j.ssc.2010.12.034

[36] P. H. Borse, H. Jun, S. H. Choi, S. J. Hong, J. S. Lee, Appl. Phys. Lett. , Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light, 93 (2008) 173103_1-3.

DOI: 10.1063/1.3005557

[37] H. Kennedy and K. W. Frese, Photooxidation of water at a-Fe2O3 electrodes, J. Electrochem. Soc., 125 (1978) 709-714.

[38] P.H. Borse, J.S. Jang, S.J. Hong, J.S. Lee, J.H. Jung, T.E. Hong, C.W. Ahn, E.D. Jeong, K.S. Hong, J.H. Yoon, H.G. Kim, Photocatalytic hydrogen generation from water-methanol mixtures using nanocrystalline zinc ferrite under visible light irradiation, J. Korean Phys. Soc., 55 (2009).

DOI: 10.3938/jkps.55.1472

[39] E.D. Jeong, S. M. Yu, J.Y. Yoon, J.S. Bae, C R. Cho, K.T. Lim, Rekha Dom, P.H. Borse and H.G. Kim, Efficient visible light photocatalysis in cubic Sr2FeNbO6, ,J. Ceram. Proc. Res., 13 (2012) 305-309.

[40] P.H. Borse, L.S. Kankate, F. Dassenoy, W. Wogel, J. Urban and S.K. Kulkarni, Synthesis and investigations of rutile phase nanoparticles of TiO2, J. Mater. Sci. Mater. Elect., 13 (2002) 553-559.

Fetching data from Crossref.
This may take some time to load.