Metal Doped Titanium Dioxide: Synthesis and Effect of Metal Ions on Physico-Chemical and Photocatalytic Properties

Abstract:

Article Preview

Titanium dioxide (Titania; TiO2) is one of the most widely used metal oxide semiconductor in the field of photocatalysis for removal of pollutants. It has been noted that titanium dioxide is a research friendly material as its physico-chemical and catalytic properties can be easily altered as per specific application. Since many years, researchers have tried to modify the properties of titanium dioxide by means of doping with metals and non-metals to improve its performance for photocatalytic degradation (PCD) applications. The doping of various metal ions like Ag, Ni, Co, Au, Cu, V, Ru, Fe, La, Pt, Cr, Ce, etc. in titanium dioxide have been found to be influencing the band gap, surface area, particle size, thermal property, etc. and therefore the photocatalytic activity in PCD. Moreover, photocatalytic activity of doped titanium dioxide has been observed in visible light range (i.e., at wavelength >400 nm). In this review, different synthesis route for doping of metal ions in titanium dioxide have been emphasised. The effect of metal dopant on the structural, textural and photocatalytic properties of titanium dioxide has been reviewed.

Info:

Periodical:

Edited by:

Rajesh J. Tayade

Pages:

364-378

Citation:

S. I. Mogal et al., "Metal Doped Titanium Dioxide: Synthesis and Effect of Metal Ions on Physico-Chemical and Photocatalytic Properties", Materials Science Forum, Vol. 734, pp. 364-378, 2013

Online since:

December 2012

Export:

Price:

$38.00

[1] D. Chen, M. Sivakumar, A.K. Ray, Heterogeneous photocatalysis in environmental remediation, Dev. Chem. Eng. Mineral Process. 8 (2000) 505-550.

DOI: https://doi.org/10.1002/apj.5500080507

[2] R.W. Matthews, in: E. Pelizzetti, M. Schiavello (Eds. ), Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht (1991) 427–449.

[3] C. Minero, E. Pelizzetti, P. Pichat, M. Sega, M. Vincenti, Formation of Condensation Products in Advanced Oxidation Technologies: The Photocatalytic Degradation of Dichlorophenols on TiO2, Environ. Sci. Technol. 29 (1995) 2226-2234.

DOI: https://doi.org/10.1021/es00009a012

[4] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.

[5] R.W. Matthews, in: D.F. Ollis, H. Al-Ekabi (Eds. ), Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam (1993) 121–138.

[6] Y. Parent, D. Blake, K. Magrini-Bair, C. Lyons, C. Turchi, A. Watt,E. Wolfrum, M. Prairie, Solar photocatalytic processes for the purification of water: state of development and barriers to commercialization, Sol. Energy 56 (1996) 429-438.

DOI: https://doi.org/10.1016/0038-092x(96)81767-1

[7] Wold, Photocatalytic Properties of TiO2, Chem. Mater. 5 (1993) 280-283.

[8] W.Y. Choi, A. Termin, M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98 (1994) 13669-13679.

DOI: https://doi.org/10.1021/j100102a038

[9] K.A. Magrini, A. Watt, B. Rinehart, W.B. Stine, T. Tanaka, D.E. Claridge (Eds. ), Solar Engineering, The American Society of Mechanical Engineers. 1(1995) 415-420.

[10] D. Hufschmidt, D. Bahnemann, J.J. Testa, C.A. Emilio, M.I. Litter, Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2, J. Photochem. Photobiol. A 148 (2002) 247-255.

DOI: https://doi.org/10.1016/s1010-6030(02)00050-3

[11] M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocat- alyticsystems, Appl. Catal. B: Environ. 23 (1999) 89-114.

[12] T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag particles loading on photocatalytic reduction of selenateions, Chem. Eng. J. 95 (2003) 179-186.

DOI: https://doi.org/10.1016/s1385-8947(03)00103-7

[13] C. Su, C.H. Liao, J.D. Wang, C.M. Chiu, B.J. Chen, The adsorption and reactions of methyl iodide on powdered Ag/TiO2, Catal. Today. 97 (2004) 71-75.

DOI: https://doi.org/10.1016/j.cattod.2004.04.053

[14] V. Vamathevan, R. Amal, Donia Beydoun, G. Low, S. McEvoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, J. Photochem. and Photobiol. A: Chemistry. 148 (2002) 233-245.

DOI: https://doi.org/10.1016/s1010-6030(02)00049-7

[15] R. J. Tayade, R. G. Kulkarni and R. V. Jasra; Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water Ind., Engg. Chem. Res., 45 (2006) 5231-5238.

DOI: https://doi.org/10.1021/ie051362o

[16] R. J. Tayade, H. C. Bajaj, Raksh V. Jasra, Photocatalytic Removal of Organic Contaminants From Water Exploiting Tuned Bandgap Photocatalysts, Desalination; 275 (2011) 160-165.

DOI: https://doi.org/10.1016/j.desal.2011.02.047

[17] H. Gerischer, A. Heller, Photocataly2tic oxidation of organic molecules at TiO2 particles by sunlight in aerated water,J. Electrochem. Soc. 139 (1992) 113-118.

DOI: https://doi.org/10.1149/1.2069154

[18] H. Gerischer, A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles, J. Phys. Chem. 95 (1991) 5261-5267.

DOI: https://doi.org/10.1021/j100166a063

[19] C.M. Wang, A. Heller, H. Gerischer, Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds, J. Am. Chem. Soc. 114 (1992) 5230-5234.

DOI: https://doi.org/10.1021/ja00039a039

[20] D.H. Kim, H.S. Hong, S.J. Kim, J.S. Song, K.S. Lee, Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying, J. Alloy. Compd. 375 (2004) 259-264.

DOI: https://doi.org/10.1016/j.jallcom.2003.11.044

[21] D.H. Kim, H.S. Park, S.J. Kim, K.S. Lee, Characteristics of Ni 8 wt%-doped titanium dioxide photocatalyst synthesized by mechanical alloying, Catal. Lett. 1–2 (2005) 49-52.

DOI: https://doi.org/10.1007/s10562-004-3084-y

[22] S.D. Park, Y.H. Cho, W.W. Kim, S.J. Kim, Understanding of Homogeneous Spontaneous Precipitation for Monodispersed TiO2 Ultrafine Powders with Rutile Phase around Room Temperature, J. Solid State Chem. 146 (1999) 230.

DOI: https://doi.org/10.1006/jssc.1999.8342

[23] H.S. Park, D.H. Kim, J.H. Jho, S.J. Kim, K.S. Lee, The photocatalytic activity of 2. 5 wt% Cu-doped TiO2 nano powders synthesized by mechanical alloying, J. Alloy. Compd. 415 (2006) 51-55.

DOI: https://doi.org/10.1016/j.jallcom.2005.07.055

[24] D. H. Kim, D. K Choi, S.J. Kim, K. S. Lee, The effect of phase type on photocatalytic activity in transition metal doped TiO2 Nanoparticles, Catal. Commun. 9 (2008) 654-657.

DOI: https://doi.org/10.1016/j.catcom.2007.07.017

[25] P. K. Biswas, Sol- Gel Derived Optical materials, S. Kumar (Kumar and associates), 4 (1997) 531-554.

[26] E. H. de Faria, A. L marcal, E. J Nassar, K.J. Ciuffi & P.S. Calefi, Sol-Gel TiO2 Thin Films Sensitized with the Mulberry Pigment Cyanidin, Mat. Res. 10 (2007) 413-417.

DOI: https://doi.org/10.1590/s1516-14392007000400015

[27] C.S. Jeffrey, Wu, C. Chen, J. Photochem and Photobiol. A: Chemistry 163 (2004) 509-515.

[28] C.C. Pan, C.S. Jeffrey, Wu, Visible-light response Cr-doped TiO2−XNX photocatalysts, Mat. Chem. and Phys. 100 (2006) 102–107.

DOI: https://doi.org/10.1016/j.matchemphys.2005.12.013

[29] M.S. Lee, S. Hong, M. Mohseni, Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent, J. Molec. Catal. A: Chemical 242 (2005) 135-140.

DOI: https://doi.org/10.1016/j.molcata.2005.07.038

[30] S. Kim, S.J. Hwang, W. Choi, Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst, J. Phys. Chem. B, 109 (2005) 24260-24267.

DOI: https://doi.org/10.1021/jp055278y

[31] E. Sotter, X. Vilanova, E. Llobet, M. Stankova, X. Correig, Niobium -Doped Titania Nanpowders for Gas Sensor Applications, J. Optoelectron. Adv Mater. Vol. 7, No. 3, June 2005, 1395-1398.

[32] Y. Zhang, H. Zhang, Y. Xu and Y. Wang, Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties, J. Mater. Chem., 13 (2003) 2261-2265.

DOI: https://doi.org/10.1039/b305538h

[33] L.Q. Jing, X.J. Sun, B. F Xin, B.Q. Wang, W. M Cai, H. G Fu, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity, J. Solid State Chem. 177 (2004) 3375-3382.

DOI: https://doi.org/10.1016/j.jssc.2004.05.064

[34] T. -D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, The role of rare earth metals in lanthanide-incorporated mesoporous titania, Microporous and Mesoporous Materials, 119 (2009) 290-298.

DOI: https://doi.org/10.1016/j.micromeso.2008.10.039

[35] M. Iwasaki, M. Hara, H. Kawada, H. Taday, S. Ito, Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light, J. Colloid. Interface Sci. 224, (2000), 202-204.

DOI: https://doi.org/10.1006/jcis.1999.6694

[36] V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, J. Photochem. and Photobiol. A: Chemistry 148 (2002) 233-245.

DOI: https://doi.org/10.1016/s1010-6030(02)00049-7

[37] X.Z. Li and F. B. Li, Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment, Environ Sci. Technol., 35 (2001) 2381-2387.

DOI: https://doi.org/10.1021/es001752w

[38] N. Sobana, M. Muruganadham1, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes, J. of Molec. Catal. A: Chemical 258 (2006) 124-132.

DOI: https://doi.org/10.1016/j.molcata.2006.05.013

[39] K. Iketani, R. De Sunb, M. Toki, K. Hirota, O. Yamaguchi, Materials Science and Engineering B 108 (2004) 187-193.

[40] T. Ohno, Fumihiro T., KanFujhara, Shinobu Izumi, Michio Matsumura, Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder, J. Photochem. Photobiol A: Chemistry. 127 (1999) 107-110.

DOI: https://doi.org/10.1016/s1010-6030(99)00128-8

[41] A. Di Paola, E. Garc´ıa-López, S. Ikeda, G. Marc`i, B. Ohtani, L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2, Catalysis Today. 75 (2002) 87-93.

DOI: https://doi.org/10.1016/s0920-5861(02)00048-2

[42] J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization , J. Photochem. Photobiol A: Chemistry 180 (2006) 196–204.

DOI: https://doi.org/10.1016/j.jphotochem.2005.10.017

[43] J. Zhou, Y. Zhang, X. S. Zhao, A.K. Ray, Photodegradation of Benzoic Acid over Metal-Doped TiO2, Ind. Eng. Chem. Res. 45 (2006) 3503-3511.

DOI: https://doi.org/10.1021/ie051098z

[44] A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, H. Aritani, Synthesis of nanotube from a layered H2Ti4O9 · H2O in a hydrothermal treatment using various titania sources , J. Mater. Sci. 39 (2004) 4239-4245.

DOI: https://doi.org/10.1023/b:jmsc.0000033405.73881.7c

[45] W. Liu, J. Ma, X. GuangQu, W. Cao, Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under visible light irradiation, Res. Chem. Intermed. 35 (2009) 321-328.

DOI: https://doi.org/10.1007/s11164-009-0025-9

[46] A. Zielinska Jurek, M. Walicka, A. Tadajewska, I. Lacka, M. Gazda, A. Zaleska, Preparation of Ag/Cu-doped titanium(IV) oxide nanoparticles in w/o microemulsion, Physicochem. Probl. Miner. Process. 45(2010) 113-126.

[47] X.W. Zhang, L.C. Lei, One step preparation of visible-light responsive Fe–TiO2 coating photocatalysts by MOCVD, Mater. Lett., 62 (2008) 895-897.

DOI: https://doi.org/10.1016/j.matlet.2007.07.007

[48] .

[48] S Klosek and D. Raftery, Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol, J. Phys. Chem. B, 105 (2001) 2815-2819.

DOI: https://doi.org/10.1021/jp004295e

[49] J.O. Carneiroa, V. Teixeiraa, A. Portinhaa, L. Dupa´ka, A. Magalha˜ esa, P. Coutinho, Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering, Vacuum 78 (2005).

DOI: https://doi.org/10.1016/j.vacuum.2004.12.012

[50] G. Zhao, H. Kozuka, H. Lin, T. Yoko, Sol–gel-derived VχTi1−χO2 films and their photocatalytic activities under visible light irradiation, Thin Solid Films 339 (1999) 123-128.

[51] S.T. Martin, C.L. Morrison, M.R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, J. Phys. Chem. (1994) 13695-13704.

DOI: https://doi.org/10.1021/j100102a041

[52] J. Choi, H. Park, M.R. Hoffmann, Effects of Single Metal-Ion Doping on the Visible-Light Photo-reactivity of TiO2, Journal of Physical Chemistry C, November 2009, 18-56.

[53] S.K. Ghosh, A.K. Vasudevan, P.P. Rao, K.G. K Warrier, Influence of different additives on anatase–rutile transformation in titania system , Br. Ceram. Trans., 100 (2001) 151-154.

DOI: https://doi.org/10.1179/096797801681378

[54] S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, A. Nakano, R.K. Kalia, P. Vashishta, Role of atomic charge transfer on sintering of TiO2 nanoparticles: Variable-charge molecular dynamics , J. Appl. Phys. 88 (2000) 6011-6017.

DOI: https://doi.org/10.1063/1.1321785

[55] Z.M. Shi, L. Yan, L.N. Jin, X.M. Lu, G. Zhao, The phase transformation behaviors of Sn2+-doped Titania gels, Journal of Non-Crystalline Solids 353 (2007) 2171-2178.

DOI: https://doi.org/10.1016/j.jnoncrysol.2007.02.048

[56] R.D. Shannon, J.A. Pask, Kinetics of anatase- rutile transformations, J. Am. Ceram. Soc. 98 (1965) 391-398.

[57] Mackenzie, K. J. D., The calcination of titania: IV. The effect of additives on the anatase–rutile transformation. Trans. J. Brit. Ceram. Soc., 74 (1975) 29-34.

[58] C. Martin, G. Solana, V. Rives, G. Marci, G, L. Palmisano, A. Sclafani, A. Physico-chemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catal. Lett. 49 (1997) 235-243.

DOI: https://doi.org/10.1023/a:1019025926206

[59] J. Zhu, W. Zheng, B He, J. Zhang, M. Anpo, Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A, 216 (2004) 35-43.

DOI: https://doi.org/10.1016/j.molcata.2004.01.008

[60] A.M. Ruiz, G. Sakai,A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Cr-doped TiO2 gas sensor for exhaust NO2 monitoring, Sensors and Actuators B-Chemical , 93 (2003) 509-518.

DOI: https://doi.org/10.1016/s0925-4005(03)00183-7

[61] J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, J.R. Mornate, Effects of Nb doping on the TiO2 anatase-to-rutile phase transition, J. Apply. Phy., 91 (2002) 853-861.

DOI: https://doi.org/10.1063/1.1487915

[62] A. Ahmad, J. Thiel, and S. Ismat Shah, Structural effects of niobium and silver doping on titanium dioxide nanoparticles , Journal of Physics: Conference Series, 61 (2007) 11-15.

DOI: https://doi.org/10.1088/1742-6596/61/1/003

[63] M. Bettinelli, V. Dallacasa, D. Falcomer, P. Fornasiero, V. Gombac, T. Montini, L. Romano, L, A. Speghini, Photocatalytic activity of TiO2 doped with boron and vanadium, J. Hazard. Mater., 146 (2007) 529-534.

DOI: https://doi.org/10.1016/j.jhazmat.2007.04.053

[64] S. Ghasemi, S. Rahimnejad, S.R. Setayesh, S. Rohani, M.R. Gholami, Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid, J. Hazard. Mater., 172 (2009) 1573-1578.

DOI: https://doi.org/10.1016/j.jhazmat.2009.08.029

[65] B. Ohtani, H. Kominami, R.M. Bowman, D.P. Colombo Jr., H. Noguchi, K. Uosaki, Femtosecond Diffuse Reflectance Spectroscopy of Aqueous Titanium(IV) Oxide Suspension: Correlation of Electron-Hole Recombination Kinetics with Photocatalytic Activity, Chem. Lett. 27 (1998).

DOI: https://doi.org/10.1246/cl.1998.579

[66] H.M. Coleman , K. Chiang and R. Amal, Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water, Chem. Eng. J, 113 (2005) 65-72.

DOI: https://doi.org/10.1016/j.cej.2005.07.014

[67] N. Daneshvar , M. Rabbani, N. Modirshahla N. and M.A. Behnajady, Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process, J Photochem. Photobiol. A, 168 (2004) 39-45.

DOI: https://doi.org/10.1016/j.jphotochem.2004.05.011

[68] M.A. Behnajady, N. Modirshahla, N. Daneshvar and M. Rabbani, Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates, Chem. Eng. J, 127 (2007) 167-176.

DOI: https://doi.org/10.1016/j.cej.2006.09.013

[69] T. Whang , H. Huang, M. Hsieh and J. Chen, Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue, Int. J. Mol. Sci., 10 (2009) 4707-4718.

DOI: https://doi.org/10.3390/ijms10114707

[70] S. T. Hussain, A. Siddiqa, Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants, Int. J. Environ. Sci. Tech., 8 (2011) 351-362.

DOI: https://doi.org/10.1007/bf03326222

[71] M.W. Xu, S.J. Bao, X.G. Zhang, Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett., 59 (2005) 2194-2198.

DOI: https://doi.org/10.1016/j.matlet.2005.02.065

[72] T. Tong, J. Zhang ,B. Tian, F. Chena, D. He, M. Anpo, Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, Journal of Colloid and Interface Science, 315 (2007).

DOI: https://doi.org/10.1016/j.jcis.2007.06.051

[73] Mst. ShamsunNahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles, Chemosphere, 65 (2006) 1976-(1982).

DOI: https://doi.org/10.1016/j.chemosphere.2006.07.002

[74] E. Borgarello, J. Kiwi, L. Gratzel, E. Pelizzetti, M. Visca, Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, J. Am. Chem. Soc., 104 (1982) 2996-3002.

DOI: https://doi.org/10.1021/ja00375a010

[75] J.M. Herrmann, J. Disdier, P. Pichat, Chem., Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination Phys. Lett., 108 (1984) 618-622.

DOI: https://doi.org/10.1016/0009-2614(84)85067-8

[76] K. Wilke, H.D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania, J. Photochem. Photobiol. A, 121 (1999) 49-53.

Fetching data from Crossref.
This may take some time to load.