Common Mechanism for Superplastic Deformation in Different Classes of Materials


Article Preview

An earlier proposal is generalized to explain superplasticity in different classes of materials and grain size ranges. A definition of “superplasticity” as due to a unique physical mechanism, rather than in terms of extreme elongations and/ or strain rate sensitivity index, m, being more than or equal to 0.30 emerges.



Edited by:

Gerard Bernhart




K. A. Padmanabhan and H. Gleiter, "Common Mechanism for Superplastic Deformation in Different Classes of Materials", Materials Science Forum, Vol. 735, pp. 26-30, 2013

Online since:

December 2012




[1] K. A. Padmanabhan and G.J. Davies: Superplasticity, (Springer–Verlag, Heidelberg–Berlin 1980).

[2] O. A. Kaibyshev: Superplasticity in Alloys Intermetallides and Ceramics, (Springer–Verlag Heidelberg- Berlin 1992).

[3] T. G. Nieh, J Wadsworth and O. D. Sherby: Superplasticity in Metals and Ceramics, (Cambridge University Press Cambridge, U.K. 1997).

[4] K. A. Padmanabhan: Mater. Sci. Eng. Vol. 29 (1977), p.1.

[5] K. A. Padmanabhan and J Schlipf: J Mater. Sci. Technol. Vol. 12 (1996), p.391.

[6] T. A. Venkatesh, S. S. Bhattacharya, K. A. Padmanabhan and J. Schlipf: Mater. Sci. Technol. Vol. 12 (1996), p.635.

[7] H. Hahn and K. A. Padmanabhan: Philos. Mag. B Vol. 76 (1997), p.559.

[8] K. A. Padmanabhan and H. Gleiter: Mater. Sci. Eng. A Vol. 381 (2004), p.28.

[9] K. A. Padmanabhan: J. Mater. Sci. Vol. 44 (2009), p.2226.

[10] O. Engler, K. A. Padmanabhan and K. Luecke: Modelling and Simulation in Materials Science and Engineering Vol. 8 (2000), p.477.

[11] P. H. Pumphrey and H. Gleiter: Philos. Mag. Vol. 30 (1974), p.593.

[12] A. S. Argon: ActaMetall. Vol. 27 (1979), p.47.

[13] V. V. Astanin, S. N. Faizova and K. A. Padmanabhan, Mater. Sci. Technol., Vol. 12 (1996), p.489.

[14] Gouthama and K. A. Padmanabhan: Scripta Mater Vol. 49 (2003), p.761.

[15] J. Markmann, P. Bunzel, H. Roesner, K. W. Liu, K. A. Padmanabhan, R. Birringer, H. Gleiter and J. Weissmueller: Scripta Mater. Vol. 49 (2003), p.637.

[16] Y. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Roesner, T. Scherer and H. J. Fecht: Acta Mater. Vol. 57 (2009), p.3391.


[17] N. A. Mara, A. V. Sergueeva, T. D. Mara, S. X. McFadden and A. K. Mukherjee: Mater. Sci. Eng. A Vol. 463 (2007), p.238.

[18] A. V. Sergueeva, N. A. Mara, R. Z. Valiev and A. K. Mukherjee: Mater. Sci. Eng. A Vol. 410-411 (2005), p.413.

[19] H. Van Swygenhoven and A. Caro, Appl. Phys. Lett. Vol. 71 (1997), p.1652.

[20] H. Van swygenhoven and A. Caro, Nanostruct. Mater. Vol. 9 (1997), p.669.

[21] J. D. Eshelby, Proc. R. Soc. (London). Vol. A241 (1957), p.376.

[22] K. A. Padmanabhan and M. R. Basaria, Int. J. Mater. Res. Vol. 100 (2009), p.1543.

[23] K. A. Padmanabhan and M. R. Basaria, Mater. Sci. Eng. Vol. A527 (2009), p.225.

[24] Sripathi Sriharsha and K. A. Padmanabhan, in this volume.

[25] K. A. Padmanabhan, G. P. Dinda, H. Hahn and H. Gleiter, Mater. Sci. Eng. Vol. A 452-453 (2007), p.262.

[26] U. Betz, K. A. Padmanabhan and H. Hahn, J. Mater. Sci. Vol. 36 (2001), p.5811.

[27] T. G. Langdon: J. Mater. Sci. Vol. 41 (2006), p.597.

[28] P. S. Bate, F. J. Humphreys, N. Ridley and B. Zhang, Acta Mater. Vol. 53 (2005) p.3059.

[29] K. Sotoudeh and P. S. Bate, Acta Mater. Vol. 58 (2010), p. (1909).

[30] A. W. Bowen, textures and Microstructures, Vol. 8-9 (1988) p.233.

[31] K. A. Padmanabhan, S. Sankaran, V. S. Sarma, S. Suwas, O. Engler and S. Jupp, in Textures of Materials, ICOTOM 16, Part 1, Eds. A Tewari, S. Suwas, D. Srivastava, I. Samajdar and A. Haldar, Mater. Sci. Forum, Vols. 702-703 (2012) p.360.

[32] G. Wilde: personal communication.

[33] J. R. Trelewicz and C. A. Schuh: Acta Mater. Vol. 55 (2007), p.5948.