Effect of Electrochemical Reaction Enviroment on the Surface Morphology and Photoluminescence of Porous Silicon

Abstract:

Article Preview

Porous silicon (p-Si) is a well-known silicon based material that can emit visible light at room temperature. The radiative recombination that originated from quantum confinement effect shows photoluminescence (PL) in red, while the defect on silicon oxide at the surface of p-Si shows in blue-green region. Porous silicon can be synthesized through two methods; wet-etching and electrochemical anodization using hydrofluoric acid as the main electrolyte. The electrochemical anodization is more favorable due to faster etching rate at the surface than the conventional wet-etching method. The objective of this research is to show that both of porous silicons can be synthesized using the same main electrolyte but by varying the reaction environment during anodization/etching process. Here, we shows the wet-etching method that enhanced by polarization concentration will produce porous silicon with silicon oxide defects by means blue-green emission, while direct electrochemical anodization will produce samples that emit red PL signal. The effect of introducing KOH into the electrolyte was also studied in the case of enhanced-wet-etching method. Surface morphology of porous silicon and their photoluminescence were observed by Scanning Electron Microscope and PL spectroscopy, respectively.

Info:

Periodical:

Edited by:

Mikrajuddin Abdullah, Kikuo Okuyama and Khairurrijal

Pages:

60-66

Citation:

A. Syari’ati and V. Suendo, "Effect of Electrochemical Reaction Enviroment on the Surface Morphology and Photoluminescence of Porous Silicon", Materials Science Forum, Vol. 737, pp. 60-66, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, A. Polman, Appl. Phys. Lett. 69 (1996) (2033).

[2] J. Linnros, A. Galeckas, N. Lalic, V. Grivickas, Thin Solid Films, Appl. Phys. Lett. 297 (1997) 167.

DOI: https://doi.org/10.1016/s0040-6090(96)09359-5

[3] M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, H. A. Atwater, Appl. Phys. Lett. 72 (1998) 2577.

[4] M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, H. A. Atwater, Appl. Phys. Lett. 76 (2000) 351.

[5] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl. Phys. Lett. 56 (1990) 2379.

[6] H. Hofmeister, J. Dutta, H. Hofmann, Phys. Rev. B 54 (1996) 2856.

[7] V. Suendo, P. Roca i Cabarrocas, G. Patriarche, Optical Materials 27 (2005) 953.

DOI: https://doi.org/10.1016/j.optmat.2004.08.042

[8] L. T. Canham, Appl. Phys. Lett. 57 (1990) 1046.

[9] J. Khajehpour, W. A. Daoud, T. Williams, L. Bourgeois, J. Phys. Chem. C 115 (2011) 22131.

[10] D. T. J. Ee, C. K. Sheng, M. I. N. Isa, Malays. J. Anal. Sci. 15 (2011) 227.

[11] G. Mattei, A. Marucci, V. A. Yakovlev, M. Pagannone, Laser Phys. 8 (1998) 755.

[12] R. S. Dubey, D. K. Gautman, J. Optoelectron. Biomed. Mat. 1 (2009) 8.

[13] S. Dhanekar, S. S. Islam, T. Islam, Harsh, Int. J. Smart Sensing Intell. Syst. 3 (2010) 1.

[14] O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Rep. 38 (2000) 1.

[15] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, J. Electrochem. Soc. 137 (1990) 3612.

[16] M. Jayachandran, M. Paramasivam, K.R. Murali, D.C. Trivedi, M. Raghavan, Mater. Phys. Mech. 4 (2001) 143.

[17] K. Behzad, W. M. M. Yunus, Z. A. Talib, A. Zakaria, A. Bahrami, E. Shahriari, Adv. Opt. Tech. 2012 (2012) 581743.

[18] V. Lehmann, U. Gösele, Appl. Phy. Lett. 58 (1991) 856.

[19] P. Steiner, F. Kozlowski, W. Lang, IEEE Electr. Device L. 14 (1993) 317.

[20] K. Y. Suh, Y. S. Kim, H. H. Lee, J. Appl. Phys. 90 (2001) 4485.

[21] V. H. Pham, T. C. Do, H. Bui, T. V. Nguyen in P. Predeep (Ed. ), Optoelectronics - Materials and Techniques, InTech Publishing (2011) 27-54.

[22] D. J. Sirbuly, D. J. Gargas, M. D. Mason, P. J. Carson, S. K. Buratto, ACS Nano 2 (2008) 1131.

[23] R. J. Archer, J. Phys. Chem. Solids 14 (1960) 104.

[24] T. Baum, D. J. Schiffrin, J. Chem. Soc. Faraday Trans. 94 (1998) 691.

[25] J. N. Chazalviel, F. Ozanam, in L. T. Canham (Ed. ), Properties of Porous Silicon, Institution of Engineering and Technology, London (1997) 59–65.

Fetching data from Crossref.
This may take some time to load.