Theoretical Study of Magnetic Properties and Multiple Twin Boundary Motion in Heusler Ni-Mn-X Shape Memory Alloys Using First Principles and Monte Carlo Method

Abstract:

Article Preview

In this paper we firstly propose and study a microscopic model of multiple twin boundary motion using the first principles and Monte Carlo simulations in Heusler Ni-Mn-X (for example, X = Ga) alloys on real tetragonal lattice. The two variants of the low temperature martensite which divided by twin boundary are considered. The Heisenberg model for magnetic subsystem and Blume-Emery-Griffiths (BEG) one for structural subsystem with magnetostructural interaction between these subsystems are used. The influence of external magnetic field and anisotropy on the twin boundary motion is studied. It is shown that proposed model gives the picture of twin boundary motion as in experiments.

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Edited by:

Sergey Prokoshkin and Natalia Resnina

Pages:

461-467

Citation:

K.I. Kostromitin et al., "Theoretical Study of Magnetic Properties and Multiple Twin Boundary Motion in Heusler Ni-Mn-X Shape Memory Alloys Using First Principles and Monte Carlo Method", Materials Science Forum, Vols. 738-739, pp. 461-467, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] Planes, L. Mañosa, and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys J. Phys.: Condens. Matter 21 (2009) 233201.

DOI: https://doi.org/10.1088/0953-8984/21/23/233201

[2] K. Ullakko, I. Aaltio, P. Yakovenko, A. Sozinov, A.A. Likhachev and O. Heczko, Magnetic shape memory effect progress from idea to first actuators and sensors, J. Phys. IV France 11 (2001) Pr8-243.

DOI: https://doi.org/10.1051/jp4:2001841

[3] H. Ebert, in Electronic Structure and Physical Properties of Solids, Lecture Notes in Physics Vol. 535, edited by H. Dreyssé (Springer, Berlin, 1999), p.191; Rep. Prog. Phys. 59 (1996) 1665.

[4] T. Cástan, E. Vives, and P. -A. Lindgård, Modeling premartensitic effects in Ni2MnGa: A mean-field and Monte Carlo simulation study Phys. Rev. B 60 (1999) 7071.

DOI: https://doi.org/10.1103/physrevb.60.7071

[5] V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, A First_Principles and Monte Carlo Study of Magnetostructural Transition and Magnetic Properties of Ni2 + xMn1 – xGa, Phys. Rev. B: Condens. Matter Phys. 81 (2010).

DOI: https://doi.org/10.1103/physrevb.81.094411

[6] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge Univesity Press, Cambridge, (2000).

[7] F. Albertini, A. Paoluzi, L. Pareti, M. Solzi, L. Righi, E. Villa, S. Besseghini, and F. Passaretti, Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa alloys, Journal of applied 100, (2006), 023908.

DOI: https://doi.org/10.1063/1.2218470

[8] V.D. Buchelnikov, V.V. Sokolovskiy, S.V. Taskaev, V.V. Khovaylo, A.A. Aliev, L.N. Khanov, A.B. Batdalov, P. Entel, H. Miki and T. Takagi, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys, J. Phys. D: Appl. Phys. 44, (2011).

DOI: https://doi.org/10.1088/0022-3727/44/6/064012

[9] K. I Kostromitin, V.D. Buchelnikov, V.V. Sokolovsky, P. Entel, Theoretical study of magnetic prooerties and twin boundary motion in Heusler Ni-Mn-X shape memory alloys using first principles and Monte Carlo method, Advances in Science and Technology Vol. 78, (2013).

DOI: https://doi.org/10.4028/www.scientific.net/ast.78.7

[10] P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Magnetic order and phase transformation in Ni2MnGa, Philos. Mag. B 49 (1984) 295.

DOI: https://doi.org/10.1080/13642817408246515

[11] Q. Pan, R.D. James, Micromagnetic study of Ni2MnGa under applied field, J. Appl. Phys. 87 (2000) 4702.

[12] H.D. Chopra, C. Ji, V.V. Kokorin, Magnetic-field-indused twin boundary motion in magnetic shape-memory alloys, Phys. Rev. B 61 (2000) R14913.

DOI: https://doi.org/10.1103/physrevb.61.r14913