Graphene-on-Porous-Silicon Carbide Structures

Abstract:

Article Preview

3D–SiC/graphene structures were fabricated on the basis of SiC wafers by first producing micro–porous material by anodization, and then using two–step annealing to modify the porous matrix and cover it with a 2D carbon coating. Topological features of the obtained structures extend from macro– down to nano–scale. It is expected that such topology in combination with high resistance to corrosion, and bio–compatibility of both SiC and nano–carbon will make the 3D–SiC/graphene structures prospective for tissue–inducing matrixes.

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Edited by:

Alexander A. Lebedev, Sergey Yu. Davydov, Pavel A. Ivanov and Mikhail E. Levinshtein

Pages:

133-136

Citation:

M. G. Mynbaeva et al., "Graphene-on-Porous-Silicon Carbide Structures", Materials Science Forum, Vols. 740-742, pp. 133-136, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari, Nanopore technology for biomedical applications, Biomed. Microdevices 2 (1999) 11–40.

DOI: https://doi.org/10.1023/a:1009903215959

[2] S.E. Saddow, Silicon carbide biotechnology: biocompatible semiconductor for advanced biomedical devices and applications, Elsevier, Amsterdam, (2012).

[3] S.D. McCullen, S. Ramaswamy, L.I. Clarke, R.E. Gorga, Nanofibrous composites for tissue engineering applications, WIREs Nanomed. Nanobiotechnol. 1 (2009) 369–390.

DOI: https://doi.org/10.1002/wnan.39

[4] Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends in Biotechnology 29 (2011) 205–212.

DOI: https://doi.org/10.1016/j.tibtech.2011.01.008

[5] A.J. Rosenbloom, D.M. Sipe, Y. Shishkin, Y. Ke, R.P. Devaty, W.J. Choyke, Nanoporous SiC: a candidate semi–permeable material for biomedical applications, Biomed. Microdevices 6 (2004) 261–267.

DOI: https://doi.org/10.1023/b:bmmd.0000048558.91401.1d

[6] A.J. Rosenbloom, Y. Shishkin, D.M. Sipe, Y. Ke, R.P. Devaty, W.J. Choyke, Porous silicon carbide as a membrane for implantable biosensors, Mater. Sci. Forum 457–458 (2004) 1463–1467.

DOI: https://doi.org/10.4028/www.scientific.net/msf.457-460.1463

[7] A.J. Rosenbloom, S. Nie, Y. Ke, R.P. Devaty, W.J. Choyke, Columnar morphology of porous silicon carbide as a protein–permeable membrane for biosensors and other applications, Mater. Sci. Forum 527–529 (2006) 751–754.

DOI: https://doi.org/10.4028/www.scientific.net/msf.527-529.751

[8] M. Mynbaeva, K. Mynbaev, Technological applications of porous SiC, in: T. Torchinska, Yu. Vorobiev (Eds. ), Nanocrystals and quantum dots of group IV semiconductors, American Scientific Publishers, New York, 2011, p.253–273.

[9] A.A. Lebedev, N.V. Agrinskaya, S.P. Lebedev, M.G. Mynbaeva, V.N. Petrov, A.N. Smirnov, A.M. Strel'chuk, A.N. Titkov, D.V. Shamshur, Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation, Semiconductors 45 (2011).

DOI: https://doi.org/10.1134/s1063782611050186

[10] T.B. Govorukha, A.V. Zverev, I.G. Neizvestny, N.L. Shwartz, Z. Sh. Yanovitskaya, Transformations of porous layers upon high-temperature annealing: simulation, Russian Microelectronics 36 (2007) 288–298.

DOI: https://doi.org/10.1134/s1063739707050022

[11] P.G. Cheremskoy, V.V. Slezov, V.I. Betekhtin, Pores in solids, Energoatomizdat, Moscow, 1990 (in Russian).

[12] M. Mynbaeva, A. Lavrent'ev, I. Kotousova, A. Volkova, K. Mynbaev, A. Lebedev, Current limitations in porous SiC applications, Mater. Sci. Forum 483–485 (2004) 269–272.

DOI: https://doi.org/10.4028/www.scientific.net/msf.483-485.269

[13] T.B. Li, Characteristics of graphene films on silicon– and carbon–terminated face of silicon carbide, Ph.D. Thesis, School of Physics, Georgia Institute of Technology (2006).

[14] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite–based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9 (2007) 1276–1290.

DOI: https://doi.org/10.1039/b613962k

[15] L.G. Cançado, A. Jorio, M.A. Pimenta, Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size, Phys. Rev. B 76 (2007) 064304.

DOI: https://doi.org/10.1103/physrevb.76.064304

[16] F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene, ACS Nano 5 (2011) 26–41.

DOI: https://doi.org/10.1021/nn102598m

[17] B. Sanyal, O. Eriksson, U. Jansson, H. Grennberg, Molecular adsorption in graphene with divacancy defects, Phys. Rev. B 79 (2009) 113409.

DOI: https://doi.org/10.1103/physrevb.79.113409

[18] X. Qin, Q. Meng, W. Zhao, Interactions of ethanethiol with defective graphene: first–principle calculations, 2010 Intl. Conf. on Nanotechnology and Biosensors, IPCBEE 2 (2011) 80–84.

DOI: https://doi.org/10.1016/j.egypro.2011.10.606