An EPR Study of Defects in Neutron-Irradiated Cubic SiC Crystals

Abstract:

Article Preview

EPR spectroscopy has been used to characterize neutron-irradiated cubic SiC samples after thermal annealing in the 200-1100OC temperature range. Three new paramagnetic defects named Ky6, Ky7 and Ky8 have been revealed. Based on the present results, these defects have been tentatively attributed to the negatively charged carbon vacancy-carbon antisite pair, negatively charged divacancy and neutral carbon <100> split interstitial, respectively. Furthermore, the finding of practically isotropic hyperfine splitting for EPR lines of the T6 center confirms its assignment as a carbon vacancy-interstitial pair.

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Edited by:

Alexander A. Lebedev, Sergey Yu. Davydov, Pavel A. Ivanov and Mikhail E. Levinshtein

Pages:

361-364

Citation:

V. Bratus' et al., "An EPR Study of Defects in Neutron-Irradiated Cubic SiC Crystals", Materials Science Forum, Vols. 740-742, pp. 361-364, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] Silicon Carbide: Recent Major Advances, ed. by W. J. Choyke, H. Matsunami, G. Pensl, Springer Berlin, Heidelberg (2004).

[2] J. Isoya, T. Umeda, N. Mizuochi, E. Janzen, T. Ohshima, EPR identification of intrinsic defects in SiC, Physica Status Solidi B 245 (2008) 1298-1314.

DOI: https://doi.org/10.1002/pssb.200844209

[3] H. Itoh, A. Kawasuso, T. Ohshima, M. Yoshikawa, I. Nashiyama, S. Tanigawa, S. Misawa, H. Okumura, S. Yoshida, Intrinsic defects in cubic silicon carbide, Physica Status Solidi A 162 (1997) 173-198.

DOI: https://doi.org/10.1002/1521-396x(199707)162:1<173::aid-pssa173>3.0.co;2-w

[4] U. Gerstmann, A.P. Seitsonen, D. Seresoli, F. Mauri, A.J. von Bardeleben, J.L. Cantin, J.G. Lopez, SiCCSi antisite pairs in SiC identified as paramagnetic defects with strongly anisotropic orbital quenching, Phys. Rev. B 81 (2010) 195208.

DOI: https://doi.org/10.1103/physrevb.81.195208

[5] Y.H. Lee, J.W. Corbett, EPR studies in neutron-irradiated silicon: a negative charge state of a nonplanar five-vacancy cluster (V5-), Phys. Rev. B 8 (1973) 2810-2826.

DOI: https://doi.org/10.1103/physrevb.8.2810

[6] V. Ya. Bratus', R.S. Melnik, S.M. Okulov, V.N. Rodionov, B.D. Shanina, M.I. Smoliy, A new spin one defect in cubic SiC, Physica B 404 (2009) 4739-4741.

DOI: https://doi.org/10.1016/j.physb.2009.08.124

[7] S.N. Gorin, L.M. Ivanova, Cubic silicon carbide (3C-SiC): structure and properties of single crystals grown by thermal decomposition of methyl trichlorosilane in hydrogen, Physica Status Solidi B 202 (1997) 221–245.

DOI: https://doi.org/10.1002/1521-3951(199707)202:1<221::aid-pssb221>3.0.co;2-l

[8] N. T. Son, P. Carlsson, J. ul Hassan, E. Janzén, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. Morishita, T. Ohshima, H. Itoh, Divacancy in 4H-SiC, Phys. Rev. Lett. 96 (2006) 055501.

DOI: https://doi.org/10.1103/physrevlett.96.069902

[9] F. Bruneval, G. Roma, Energetics and metastability of the silicon vacancy in cubic SiC, Phys. Rev. B 83 (2011) 144116.

DOI: https://doi.org/10.1103/physrevb.83.144116

[10] T.T. Petrenko, T.L. Petrenko, V. Ya. Bratus', The carbon <100> split interstitial in SiC, J. Phys.: Condens. Matter. 14 (2002) 12433-12440.

DOI: https://doi.org/10.1088/0953-8984/14/47/316