Effects of LiClO4 on the Characteristics and Ionic Conductivity of the Solid Polymer Electrolytes Composed of PEO, LiClO4 and PLiAA

Abstract:

Article Preview

Solid polymer electrolytes (SPEs) which were composed of poly (ethylene oxide) (PEO), poly (lithium acrylate) (PLiAA), and LiClO4 were prepared in order to investigate the influence of LiClO4 content on the ionic conductivity of the electrolyte. All of the membranes were investigated by XRD, DSC, and EIS, et.al. The dependence of SPEs conductivity on temperature was measured, and the maximum ionic conductivity is 5.88×10-6 S/cm at 293 K for membrane which is composed of PEO+PLiAA+15wt% LiClO4. The electrochemical stability window of the PEO+PLiAA+15wt% LiClO4 is 4.75 V verse Li.

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Edited by:

Xinfeng Tang, Ying Wu, Yan Yao and Zengzhi Zhang

Pages:

53-58

Citation:

R. Yang et al., "Effects of LiClO4 on the Characteristics and Ionic Conductivity of the Solid Polymer Electrolytes Composed of PEO, LiClO4 and PLiAA", Materials Science Forum, Vols. 743-744, pp. 53-58, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] D.E. Fenton, D.E. Parker, P.V. Wright, Polymer 14 (1973) 589.

[2] P. V. Wright, Br. Polym. J. 7 (1975) 319.

[3] F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nature 394 (1998) 456.

DOI: https://doi.org/10.1038/28818

[4] C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud, Solid State Ion. 11 (1983) 91.

DOI: https://doi.org/10.1016/0167-2738(83)90068-1

[5] J.R. MacCallum, C.A. Vincent, Polymer electrolyte reviews 1. Elsevier, London, (1987).

[6] J.R. MacCallum, C.A. Vincent, Polymer electrolyte reviews2. Elsevier, London, (1989).

[7] B. Scrosati, Applications of electroactive polymers. Chapman and Hall, London, (1993).

[8] P.G. Bruce, Solid state electrochemistry. Cambridge University Press, Cambridge, (1995).

[9] F.M. Gray, Solid polymer electrolytes: fundamentals and technological applications. VCH, New York, (1991).

[10] C.A. Vincent, B. Scrosati, Modern batteries: an introduction to electrochemical power sources. Butterworth-Heinemann, London, (1997).

[11] F.M. Gray, Polymer electrolytes. The Royal Society of Chemistry, London, (1997).

[12] F. Croce, G.B. Appetecchi, L. Persi, Scrosati B Nature 394 (1998) 456.

DOI: https://doi.org/10.1038/28818

[13] T. Fujinami, A. Tokimune, M.A. Metha, D.F. Shriver, Rawsky GC Chem Mater 9 (1998) 2236.

[14] Y. Tominaga, H. Ohno, Electrochim Acta 45 (2000) 3081.

[15] Xu X, Angell CA , Solid State Ion 147 (2002) 295.

[16] Z. Florjanczyk, W. Bzducha, N. Langwald, J.R. Dygas, F. Krok, B. Misztal-Faraj, Electrochim Acta 45 (2000)3563.

DOI: https://doi.org/10.1016/s0013-4686(00)00475-8

[17] Takahito Itoh, Masaaki Yoshikawa, Takahiro Uno, Masataka Kubo, Ion 15 (2009) 27.

[18] X. Ollivrin, F. Alloin, J.F. LeNest, D. Benrabah, J.Y. Sanchez, Electrochim Acta 48 (2003) (1961).

[19] J. Ulanski, P. Polanowski, A. Traiez, M. Hofmann, E. Dormann, E. Lauhina, Synthetic Met. 94 (1998) 23.

[20] R.M. Hodge, G.H. Edward, G.P. Simon, Polymer 37 (1996) 1371.

[21] L.F. Hu, Z.L. Tang, Z.T. Zhang, J. Power Sources 166 (1) (2007) 226.

[22] S. H. Kim, J. Y. Kim, H.S. Kim, H. N. Cho, Solid State Ion. 116(1999)63.

[23] Y.W. Chen-Yang, H.C. Chen, F.J. Lin, C.W. Liao, T.L. Chen, Solid State Ion. 156 (2003) 383.

[24] M. Ulaganathan, S. Sundar Pethaiah, S. Rajendran, Mater. Chem. Phys. 129 (2011) 471.

[25] S. Rajendran, M. Sivakumar, R. Subadevi, J. Power Sources124(2003)225.