Preparation and Magnetic Properties of BiFeO3 and NiCuZn Ferrite Multiferroic Composites


Article Preview

A series of xBiFeO3-(1-x) NiCuZn ferrite multiferroic composites have been prepared by solid state reaction method, in which x is 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0. Composites are densified at 700 °C for 3 h. XRD results show that ferroelectric phase and ferromagnetic phase can be co-existed in the composites. The density of composites increases with an increase of BiFeO3 content. SEM results reveal that the bigger grains are BiFeO3 and the smaller grains are NiCuZn ferrite. Composites exhibits the typical magnetic hysteresis loops. Increasing x, the saturation magnetization of composites linearly decrease. The real part of permeability for composites decreases with increasing x. Meanwhile, the peak of imaginary part of permeability shifts toward higher frequency.



Materials Science Forum (Volumes 745-746)

Edited by:

Lianjun Wang, Xiumei Wang, Guo Yan and Kefu Yao






X. W. Qi et al., "Preparation and Magnetic Properties of BiFeO3 and NiCuZn Ferrite Multiferroic Composites", Materials Science Forum, Vols. 745-746, pp. 102-106, 2013

Online since:

February 2013




[1] Y. Tokura, Multiferroic-toward strong coupling between magnetization and polarization in a solid, J. Magn. Magn. Mater. 310 (2007) 1145-1150.

[2] V.E. Wood, A.E. Austin, Possible applications for magnetoelectric materials, Int. J. Magn. 5 (1973) 303-315.

[3] Y. Tokura, Multiferroics as quantum electromagnets, Science, 312 (2006) 1481-1482.

DOI: 10.1126/science.1125227

[4] N.A. Spaldin, M. Fiebig, The Renaissance of magnetoelectric multiferroics, Science, 309 (2005) 391-392.

[5] K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders, Adv. Phys. 58 (2009) 321-448.

[6] J. Yu, J.H. Chu, Progress and prospect for high temperature single phased magnetic ferroelectrics, Chinese Science Bulletin, 53 (2008) 2097-2112.

DOI: 10.1007/s11434-008-0308-3

[7] C.G. Duan, Progress in the study of magnetoelectric effect, Progress in Physics, 29 (2009) 215-238.

[8] P. Curie, on the symmetry in physical phenomena, symmetry of electric and magnetic fields (translated from French), J. Phys. 3 (1894) 393-415.

[9] I.E. Dzyaloshinskii, The magnetoelectric effect in antiferromagnetic materials, Sov. Phys-JETP. 10 (1959) 628-629.

[10] D.N. Astrov, The magnetoelectric effect in antiferromagnetic materials, Sov. Phys-JETP, 11(1960) 708-709.

[11] V. J. Folen, G.T. Rado, E. W. Stalder, Anisotropy of the magnetoelectric effect in Cr2O3, Phys. Rev. Lett. 6(1961) 607-608.

DOI: 10.1103/physrevlett.6.607

[12] G.T. Rado, V.J. Folen, observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains, Phys. Rev. Lett. 7(1961) 310-311.

DOI: 10.1103/physrevlett.7.310

[13] X.H. Zheng, P.J. Chen, N. Ma, Z.H. Ma, D.P. Tang, synthesis and dielectric properties of BiFeO3 derived from molten salt method, J. Mater. SCI. Mater. El. 23 (2012) 990-994.

DOI: 10.1007/s10854-011-0533-4

[14] Y.B. Yao, W.C. Liu, C.L. Mak, Pyroelectric properties and electrical conductivity in samarium doped BiFeO3 ceramics, J. Alloy Compd. 527 (2012) 157-162.

DOI: 10.1016/j.jallcom.2012.02.182

[15] H.B. Yang, Q.Q. Ke, H.Y. Si, J.S. Chen, 0. 7BiFeO3-0. 3BaTiO3-Y3Fe5O12 composites with simultaneously improved electrical and magnetic properties, J. Appl. Phys. 111(2012) 024104.

DOI: 10.1063/1.3677944

[16] J.H. He, J.G. Guan, W. Wang, Investigation of exchange bias in 0. 1MFe2O4/0. 9BiFeO3 (M =Co, Cu, Ni) nanocomposites, J. Magn. Magn. Mater. 324 (2012) 1095-1099.

[17] N.A. Hill, why are there so few magnetic ferroelectric, J. Phys. Chem. B 104 (2000), 6694-6709.

[18] C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, The atomic structure of BiFeO3, Solid State Commun. 7(1969) 701-704.

DOI: 10.1016/0038-1098(69)90597-3

In order to see related information, you need to Login.