Effects of Consolidation Process on the Microstructure and Mechanical Properties of ODS Ferritic Alloy


Article Preview

The oxide-dispersion-strengthened (ODS) ferritic alloy powders (Fe-14Cr-3Al-2W-0.1Ti-0.35Y2O3) were prepared by mechanical alloying (MA) at a rotation speed of 720 rpm for 24 h. All the elements were mixed homogenously in the powder, and Cr and Al dissolved in α-Fe after MA. The bulk samples were produced by spark plasma sintering (SPS) at 950 and 50 MPa and by hot isostatic pressing (HIP) at 1150 and 130 MPa, respectively. The SPS sample showed a tensile strength of 730 MPa and a poor ductility due to the existence of pores in microsize. The HIP sample had a high tensile strength of 980 MPa, yield strength of 710 MPa and elongation of 10.3 %. The excellent mechanical properties of the HIP sample was due to the small grain size of the matrix of about 400 nm and the fine oxide particles of 5-40 nm.



Materials Science Forum (Volumes 747-748)

Edited by:

Yafang Han, Junpin Lin, Chengbo Xiao and Xiaoqin Zeng




T. Liu et al., "Effects of Consolidation Process on the Microstructure and Mechanical Properties of ODS Ferritic Alloy", Materials Science Forum, Vols. 747-748, pp. 507-512, 2013

Online since:

February 2013




[1] A. Kimura, T. Sawai, K. Shiba, A. Hishinuma, S. Jitsukawa, S. Ukai, A. Kohyama, Recent progress in reduced activation ferritic steels R&D in Japan, Nuclear Fusion. 43 (2003) 1246-1249.

DOI: https://doi.org/10.1088/0029-5515/43/10/027

[2] N.Y. Iwata, T. Liu, P. Dou et al., Effects of MA environment on the mechanical and microstructural properties of ODS ferritic steels, Journal of Nuclear Materials. 417 (2011)162-165.

DOI: https://doi.org/10.1016/j.jnucmat.2010.12.058

[3] M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, Nanometer scale precipitation in ferritic MA/ODS alloy MA957, Journal of Nuclear Materials. 329-333 (2004) 338-341.

DOI: https://doi.org/10.1016/j.jnucmat.2004.04.085

[4] M. Klimiankou, R. Lindau, A. Moslang, TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic–martensitic steels, Journal of Nuclear Materials. 329-333 (2004) 347-351.

DOI: https://doi.org/10.1016/j.jnucmat.2004.04.083

[5] H. Sakasegawa, S. Ohtsuka, S. Ukai, et al., Microstructural evolution during creep of 9Cr-ODS steels, Fusion Engineering and Design 81 (2006) 1013-1018.

DOI: https://doi.org/10.1016/j.fusengdes.2005.09.045

[6] M.D. McNeese, D.C. Lagoudas, T.C. Pollock, Processing of TiNi from elemental powders by hot isostatic pressing, Materials Science and Engineering A280 (2000) 334-348.

DOI: https://doi.org/10.1016/s0921-5093(99)00550-x

[7] W. Li, L. Gao, Rapid sintering of nanocrystalline ZrO2 (3Y) by spark plasma sintering, Journal of the European Ceramic Society. 20 (2000)2441-2445.

DOI: https://doi.org/10.1016/s0955-2219(00)00152-7

[8] B. Mei, Y. Miyamoto, Investigation of TiAl/Ti2AlC composites prepared by spark plasma sintering, Materials Chemistry and Physics. 75 (2002) 291-295.

DOI: https://doi.org/10.1016/s0254-0584(02)00078-0

[9] H. Kishimoto, M.J. Alinger, G.R. Odette, T. Yamamoto, TEM examination of microstructure evolution during processing of 14CrYWTi nanostructured ferritic alloys, Journal of Nuclear Materials. 329-333 (2004) 369-371.

DOI: https://doi.org/10.1016/j.jnucmat.2004.04.044

[10] M.F. Hupalo, M. Terada, A.M. Kliauga, A.F. Padilha, Microstructural characterization of INCOLOY alloy MA 956, Materialwissenschaft und Werkstofftechnik. 34 (2003) 505-508.

DOI: https://doi.org/10.1002/mawe.200390100

[11] A. Czyrska-Filemonowicz, K. Szot, A. Wasilkowska, A. Gil, W.J. Quadakkers, Mcroscopy (AFM, TEM, SEM) studies of oxide scale formation on FeCrAl based ODS alloy, Solid State Ionics. 117 (1999) 13-20.

DOI: https://doi.org/10.1016/s0167-2738(98)00243-4

[12] L. Zhang, S. Ukai, T. Hoshino, S. Hayashi, X. Qu, Y2O3 evolution and dispersion refinement in Co-based ODS alloys, Acta Materialia. 57 (2009) 3671-3682.

DOI: https://doi.org/10.1016/j.actamat.2009.04.033