Electric Discharge Machining of 10 vol% Al2O3/Al Metal Matrix Composite - An Experimental Study


Article Preview

The particle reinforced metal matrix composite have hard particles dispersed in matrix which make them difficult to machine with conventional machining methods. Electric discharge machining (EDM) is an effective tool for machining such materials. This experimental study was undertaken to identify the significant factors that affect the output responses while machining of 10 vol%Al2O3/Al composite material. The material removal rate (MRR) and tool wear rate (TWR) have a direct relationship with current and an inverse relationship with pulse on-time. Appropriate levels of current and pulse on time levels can be chosen while roughing and finishing operations. Normal polarity between terminals had higher MRR than with reverse polarity. The recast layer had a non-uniform and wave-like morphology and cracks penetrated into the matrix phase resulting in high residual stresses exceeding the ultimate tensile strength of the material. Pulse on-time has greater influence on recast layer thickness than current. The reinforced particles were all clustered under the machined surface with very few in the recast layer which results in a low strength of the machined surface. The presence of reinforced particles in recast layer is very rare, so it is desirable to remove it. Keywords: electro-discharge, machining, aluminum matrix composites, material, removal, tool, wear, roughness, recast, layer



Edited by:

Rupinder Singh






S. S. Sidhu et al., "Electric Discharge Machining of 10 vol% Al2O3/Al Metal Matrix Composite - An Experimental Study", Materials Science Forum, Vol. 751, pp. 9-19, 2013

Online since:

March 2013




[1] Kainer, K.U. Metal matrix composites. Custom materials for automobile and aerospace engineering. In; Kainer KU (ed) Basic of metal matrix composites Wiley – Vch. Weinheim, 2006, pp.1-2, ISBN-13: 978-3-527-31360.

DOI: 10.1002/3527608117

[2] Schachra, A.; Lenz, E. LBM and EDM – A comparison on crack behavior. Annals of CIRP 1976, 25, 121-123.

[3] Hocheng, H.; Lei, W.T.; Hsu, H.S. Preliminary study of material removal in electric discharge machining of SiC/Al. Journal of Materials Processing Technology 1997, 63, 813-818.

DOI: 10.1016/s0924-0136(96)02730-6

[4] Bonollo, F.; Ceschini, L.; Garagnani, G.L. Mechanical and impact behavior of Al2O3)/2041 and (Al2O3)/6061 Al metal matrix composites in the 25-2000C range. Applied Composite Materials 1997, 4, 173-185.

DOI: 10.1007/bf02481779

[5] Berns, H. Comparison of wear resistant MMC and white cast iron. Wear 2003, 254, 47-54.

DOI: 10.1016/s0043-1648(02)00300-9

[6] Shu K.M.; Tu, G.C. Study of electric discharge grinding using metal matrix composite electrode. International Journal of Machine Tools and Manufacture 2003, 24, 845-854.

DOI: 10.1016/s0890-6955(03)00048-8

[7] Singh, P.N.; Ragukandan, K.; Rathinasabapathi, M.; Pai, B.C. Electric discharge machining of Al-10%SiC as-cast metal matrix composite. Journal of Materials Processing Technology 2004, 155, 1653-1657.

DOI: 10.1016/j.jmatprotec.2004.04.321

[8] Mohan, B.; Rajadurai, A.; Satyanarayana, K.G. Electric discharge machining of Al-SiC metal matrix composite using rotary tube electrode. Journal of Materials Processing Technology 2004, 153, 978-985.

DOI: 10.1016/j.jmatprotec.2004.04.347

[9] Singh, P.N.; Raghukandan, K.; Pai, B.C. Optimization by grey relational analysis of EDM parameters on machining Al-10% SiC composite. Journal of Materials Processing Technology 2004, 155, 1658-1661.

DOI: 10.1016/j.jmatprotec.2004.04.322

[10] Kumar, A.; Maheshwari, S.; Sharma, C.; Beri, N. A Study of Multiobjective Parametric optimization of Silicon Abrasive Mixed Electrical Discharge Machining of Tool Steel. Materials and Manufacturing Processes 2010, 25(10), 1041-1047.

DOI: 10.1080/10426910903447303

[11] Khanra, A.K.; Sarkar, B.R.; Bhattacharya, B.; Pathak, L.C.; Godkhindi, M.M. Performance of ZrB2-Cu composite as an EDM Electrode. Journal of Materials Processing Technology 2007, 183, 122-126.

DOI: 10.1016/j.jmatprotec.2006.09.034

[12] Ahamd, A.R.; Asokan, P.; Aravindan, S. Electric discharge machining of hybrid Al-SiC-B4C and Al-SiC-Glass MMC's. International Journal of Manufacturing Technology 2009, DOI. 10. 1007/s001770-008-1839-0.

[13] Kumar, A.; Maheshwari, S.; Sharma, C.; Beri, N. Research Developments in Additives Mixed Electrical Discharge Machining (AEDM): A State of Art Review. Materials and Manufacturing Processes 2010, 25(10), 1166-1180.

DOI: 10.1080/10426914.2010.502954

[14] Beri, N.; Maheshwari, S.; Sharma, C.; Kumar, A. Technological Advancement in Electrical Discharge Machining with Powder Metallurgy Processed Electrodes: A Review. Materials and Manufacturing Processes 2010, 25(10), 1186-1198.

DOI: 10.1080/10426914.2010.512647

[15] Novich, B.E.; Adams, R.W.; Occhionero, M.A. Low-Cost MCM-D Cavity Substrates for Packaging High Density Si and GaAs Devices. Proceedings of the 10th European Microelectronics Conference, ISHM, Copenhagen, Denmark, May 14-17, 1995, 475-481.

[16] Dufour, B.; McNulty, M.; Miller, S. Microwave Multichip Module Utilizing Aluminum Silicon Carbide With In-Situ Cast Components and High Density Interconnect Technology. International Journal of Microcircuits and Electronics Packaging, 1997, 20(3), 303 – 308.

DOI: 10.1109/icmcm.1997.581195

[17] Lee, J-W. Microstructure evaluation and phase transformation of recast layer in electrical discharge machined dual phase Fe-Mn-Al alloy. Journal of Materials Science 2003, 38, 1679-1687.

[18] De Silva, A.; Ranke, J. Electric discharge machining of metal matrix composite, In: Proceedings of International Symposium for Electro Machining (ISEM-XI), Switzerland, 1995, 75-84.

In order to see related information, you need to Login.