A Study of Properties of the Nanocrystalline CdO Thin Film Prepared by Solid-Vapor Deposition Method


Article Preview

A nanocrystalline CdO thin film was successfully synthesized on p-type silicon substrate with approximately 370 nm thickness by a vapor transport process (solid-vapor deposition) for Cd powder at 1274 K with argon and oxygen flows in a tube furnace. Scanning electronmicroscopy revealed that the product was a CdO nanocrystalline. X-raydiffraction and energy dispersive X-ray techniques were used to characterize structural properties. The grown nanocrystalline thin film had a grain size of 38 nm. Photoluminescence spectroscopy was conducted to investigate the optical properties of the nanocrystalline CdO thin film. A strong emission peak was observed at 511 nm (2.43 eV), which is ascribable to the near-band-edge emission of CdO with a full-width and half maximum of approximately 124 nm. The sheet resistance and the resistivity of the CdO thin film were measured using a four-point probe; RS = 16.2 Ω/sqand ρ = 5.82×10-4 Ω.cm.Carrier concentration and Hall mobility were obtained by Hall-effect measurement system; n = 1.53×1020 cm-3 and μH = 42.3cm2/Vs.



Edited by:

Akrajas Ali Umar, Muhamad Mat Salleh and Muhammad Yahaya




M. Zaien et al., "A Study of Properties of the Nanocrystalline CdO Thin Film Prepared by Solid-Vapor Deposition Method", Materials Science Forum, Vol. 756, pp. 54-58, 2013

Online since:

May 2013




[1] M. Ortega, G. Santane, A. Morales –Acevedo, Superficies Vacio 9 (1999) 294.

[2] F. A. Benko, F. P. Koffyberg, Solid State Commun. 57 (1986) 901.

[3] K. Senthil, Y. Tak, M. Soel and K. Yong, J. Nanoscale Res Lett. 4 (2009) 1329.

[4] K. Gurumurugan, D. Mangalaraj, Sa. K. Narayandass, J. Cryst. Growth 147 (1995) 355.

[5] M. Ristić, S. Popović, S. Musić, Mater. Lett. 58 (2004) 2494.

[6] S. Reddy, B. E. Kumara Swamy, Umesh Chandra, B. S. Sherigara,H. Jayadevappa, Int. J. Electrochem. Sci. 5 (2010) 10.

[7] K. T. R. Reddy, G. M. Shanthini, D. Johnston, R. W. Miles, Thin Solid Films 427 (2003) 397.

[8] L. M. Su, N. Grote , F. Schmitt, Electron. Lett. 20 (1984 ) 716.

[9] Z. Zhao, D. L. Morel, C. S. Ferekides, Thin Solid Films 413 (2002) 203.

[10] Y. Hame, S. E. Sam, Solar Energy 77 (2004) 291.

[11] Z. W. Pan, Z. R. Dai, Z .L. Wang, Science 291 (2001) 1947-(1949).

[12] X. Liu, C. Li, S. Han, J. Han, C. Zhou, Appl. Phys. Lett. 82 (2003) (1950).

[13] Tz-Jun Kuo, Michael H. Huang, J. Phys. Chem. B 110 (2006) 13717.

[14] M. Zaien, N. M. Ahmed, Z. Hassan, Superlattices and Microstructures 52 (2012) 800-806.

[15] V. Popescu, N. Jumate, G.L. Popescu, M. Moldovan, C. Prejmerean, Chalcogenide Letters 7 (2010) 95–100.

[16] D.A. Lamb, S.J.C. Irvine, J. Cryst. Growth 332 (2011) 17–20.