Effect of Intergranular Interaction and Lattice Rotation on Predicted Residual Stress and Textures. Case of Austenite and Ferrite


Article Preview

Rotation of grain crystal lattice is the basic mechanism of texture formation and of anisotropic behavior of metals during plastic deformation. The classical definition of crystal lattice rotation leads in some cases to different texture and residual stress predictions than the definition based on the orientation preservation of selected sample planes and/or directions. Also the intensity of grain-matrix interaction plays an important role in the prediction of the above quantities. These problems were studied using elasto-plastic deformation model of polycrystalline materials. Examples of austenite and ferrite steels were considered.



Edited by:

Heinz Günter Brokmeier, Martin Müller, P. Klaus Pranzas, Andreas Schreyer and Peter Staron




K. Wierzbanowski et al., "Effect of Intergranular Interaction and Lattice Rotation on Predicted Residual Stress and Textures. Case of Austenite and Ferrite", Materials Science Forum, Vol. 772, pp. 97-101, 2014

Online since:

November 2013




[1] M. Berveiller, A. Zaoui, An Extension of the self-consistent scheme to plastically flowing polycrystals, J. Mech. Phys. Solids, 26 (1979) 325-344.

[2] K. Wierzbanowski, A. Baczmański, P. Lipinski and A. Lodini, Elasto-plastic models of polycrystalline material deformation and their applications, Arch. Metall. Mater., 52 (2007) 77-86.

[3] T. Leffers and R.A. Lebensohn, Ambiguities in the calculation of lattice rotations for plane-strain deformation, Proc. of the 11th. Int. Conf. on Textures of Materials (ICOTOM-11), Z. Liang et al. eds., International Academic Publ., 1996, pp.307-314.

[4] K. Wierzbanowski, M. Wroński, A. Baczmański, B. Bacroix, P. Lipinski and A. Lodini, Problem of lattice rotation due to plastic deformation. Example of rolling of f. c. c materials, Arch. Metall. Mater., 56 (2011) 575-584.

DOI: https://doi.org/10.2478/v10172-011-0061-5

[5] K. Wierzbanowski, J. Jura, W.G. Haije, R.B. Helmholdt, FCC Rolling Texture Transitions in Relation to Constraint Relaxation, Cryst. Res. Technol., 27 (1992) 513- 522 (1992).

DOI: https://doi.org/10.1002/crat.2170270417

[6] K. Wierzbanowski, J. Tarasiuk, B. Bacroix, A. Miroux and O. Castelnau, Deformation Characteristics Important for Nucleation Process. Case of Low-Carbon Steels, Archives of Metallurgy, 44 (1999) 183- 201.

[7] K. Wierzbanowski, J. Tarasiuk, B. Bacroix, K. Sztwiertnia, P. Gerber, Recrystallization Textures – Two Types of Modelling, Metals and Materials International, 9 (2003) 9-14.

DOI: https://doi.org/10.1007/bf03027223

[8] J. Tarasiuk, K. Wierzbanowski, A. Baczmański, New Algorithm of Direct Method of Texture Analysis, Cryst. Res. Technol., 33 (1998) 101- 118.

DOI: https://doi.org/10.1002/(sici)1521-4079(1998)33:1<101::aid-crat101>3.0.co;2-7

[9] J. Tarasiuk and K. Wierzbanowski, Application of the Linear Regression Method for Comparison of Crystallographic Textures, Phil. Mag. A, 73 (1996) 1083- 1091.

DOI: https://doi.org/10.1080/01418619608243705

[10] A. Baczmanski, P. Lipinski, A. Tidu, K. Wierzbanowski and B. Pathiraj, Quantitative estimation of incompatibility stresses and elastic energy stored in ferritic steel, J. Appl. Cryst., 41 (2008) 854–867.

DOI: https://doi.org/10.1107/s0021889808023911

[11] A. Baczmanski, K. Wierzbanowski, C. Braham and A. Lodini, Internal Stresses in two Phase Polycrystalline Materials, Archives of Metallurgy, 44 (1999) 39- 50.

[12] S. Wroński, A. Baczmanski, R. Dakhlaoui, Ch. Braham, K. Wierzbanowski and E. Oliver, Determination of Stress Field in Textured Duplex Steel Using TOF Neutron Diffraction Method, Acta Materialia, 55 (2007) 6219-6233.

DOI: https://doi.org/10.1016/j.actamat.2007.07.044

[13] A. Baczmański, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, A. Lodini, Anisotropy of Micro-Stress - Measured by Diffraction, Revue de Metallurgie, 94 (1997) 1467- 1474.

DOI: https://doi.org/10.1051/metal/199794121467

[14] A. Baczmański, A. Tidu, P. Lipinski, M. Humbert, and K. Wierzbanowski, New Type of Diffraction Elastic Constants for Stress Determination, Materials Science Forum, 524-525 (2006) 235-240.

DOI: https://doi.org/10.4028/www.scientific.net/msf.524-525.235

Fetching data from Crossref.
This may take some time to load.