Effect of the Bonding Temperature on the Bonding Interface in the Press Bonding of Ti-17 Alloy

Abstract:

Article Preview

The press bonding experiments of Ti-17 alloy were conducted at the bonding temperatures ranging from 730°C to 880°C, a bonding pressure of 20 MPa and a bonding time of 15 min. The results show that the plastic deformation is a main bonding mechanism in the press bonding of Ti-17 alloy. With an increase in bonding temperature, the plastic deformation enhances and voids in the bonding interface disappear gradually. The grain boundary migration and grain growth spanning the bonding interface start to activate, which is of benefit to obtaining a sound bond. The failure mode of bonding interface changes from a brittle fracture to a ductile fracture. However, a higher bonding temperature will induce grain coarsening which result in strength decreasing. The SEM of lap shear fracture surfaces indicates that a bond with superior strength can be obtained at a bonding temperature of 860°C.

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Edited by:

A. Kiet Tieu, Hongtao Zhu and Qiang Zhu

Pages:

732-740

DOI:

10.4028/www.scientific.net/MSF.773-774.732

Citation:

H. Li et al., "Effect of the Bonding Temperature on the Bonding Interface in the Press Bonding of Ti-17 Alloy", Materials Science Forum, Vols. 773-774, pp. 732-740, 2014

Online since:

November 2013

Export:

Price:

$35.00

[1] H. Li, M.Q. Li, T. Han, H.B. Liu, The deformation behavior of isothermally compressed Ti-17 titanium alloy in α + β field, Mater. Sci. Eng. A 546 (2012) 40-45.

DOI: 10.1016/j.msea.2012.03.020

[2] W.Y. Li, T.J. Ma, S.Q. Yang, Microstructure evolution and mechanical properties of linear friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) titanium alloy joints, Adv. Eng. Mater. 12 (2010), 35-43.

DOI: 10.1002/adem.200900185

[3] T.J. Ma, W.Y. Li, B. Zhong, Y. Zhang, J.L. Li, Effect of post-weld heat treatment on microstructure and property of linear friction welded Ti17 titanium alloy joint, Sci. Technol. Weld. Joining 17 (2012) 180-185.

DOI: 10.1179/1362171811y.0000000079

[4] R.L. Zhou, D.L. Guo, C.Q. Li, TIG welding of high strength titanium alloy, Weld. Joining (11) (2004) 29-31. (in Chinese).

[5] P.F. Fu, Z.Y. Mao, C.J. Mao, F.J. Liu, Study on microstructure and residual stress of TC17 alloy with EBW, in: China Electrotechnical Society, Charged Particle Beam Source National Conference Proceedings, Wuhan, 2006, pp.299-301. (in Chinese).

[6] H. Wu, Influence of process variables on press bonding of superplastic 8090 Al-Li alloy, Mater. Sci. Eng. A 264 (1999) 194-200.

DOI: 10.1016/s0921-5093(98)01084-3

[7] M.F. Islam, N. Ridley, Isostatic diffusion bonding of a microduplex stainless steel, Scripta Mater. 38 (1998) 1187-1193.

DOI: 10.1016/s1359-6462(98)00037-2

[8] G. Zhang, R.S. Chandel, H.P. Seow, Solid state diffusion bonding of Inconel 718, Sci. Technol. Weld. Joining 6 (2001) 235-239.

DOI: 10.1179/136217101101538820

[9] H. W, S. Lee, Effect of bonding variables on bonding mechanisms in press bonding superplastic 8090 aluminium alloy, Mater. Sci. Technol. 17 (2001) 906-911.

DOI: 10.1179/026708301101510915

[10] H. Wu, S. Lee and J. Wang, Solid-state bonding of iron-based alloys, steel-brass, and aluminum alloys, J. Mater. Process. Technol. 75 (1998) 173-179.

DOI: 10.1016/s0924-0136(97)00323-3

[11] AWS A3. 0: 2001: Standard welding terms and definitions, American Welding Society, Miami, 2001, p.10.

In order to see related information, you need to Login.